transformers/pytorch_transformers/optimization.py
2019-07-11 14:48:22 +02:00

193 lines
8.5 KiB
Python

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch optimization for BERT model."""
import logging
import math
import torch
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
logger = logging.getLogger(__name__)
class ConstantLRSchedule(LambdaLR):
def __init__(self, optimizer, last_epoch=-1):
super(ConstantLR, self).__init__(optimizer, lambda x: x, last_epoch=last_epoch)
class WarmupCosineSchedule(LambdaLR):
"""
Linearly increases learning rate from 0 to 1 over `warmup` training steps.
Decreases learning rate from 1. to 0. over remaining `t_total - warmup` steps following a cosine curve.
If `cycles` (default=0.5) is different from default, learning rate follows cosine function after warmup.
:param warmup: see LRSchedule
:param t_total: see LRSchedule
:param cycles: number of cycles. Default: 0.5, corresponding to cosine decay from 1. at progress==warmup and 0 at progress==1.
:param kw:
"""
warn_t_total = True
def __init__(self, optimizer, warmup_steps, t_total, cycles=.5, last_epoch=-1):
def lr_lambda(step):
if step < warmup_steps:
return step / max(1, warmup_steps)
else:
progress = (step - warmup_steps) / max(1, t_total - warmup_steps) # progress after warmup
return 0.5 * (1. + math.cos(math.pi * cycles * 2 * progress))
super(WarmupCosineSchedule, self).__init__(optimizer, lr_lambda, last_epoch=last_epoch)
class WarmupCosineWithHardRestartsSchedule(LambdaLR):
"""
Linearly increases learning rate from 0 to 1 over `warmup` fraction of training steps.
If `cycles` (default=1.) is different from default, learning rate follows `cycles` times a cosine decaying
learning rate (with hard restarts).
"""
def __init__(self, optimizer, warmup_steps, t_total, cycles=1., last_epoch=-1):
def lr_lambda(step):
if step < warmup_steps:
return step / max(1, warmup_steps)
else:
progress = (step - warmup_steps) / max(1, t_total - warmup_steps) # progress after warmup
ret = 0.5 * (1. + math.cos(math.pi * ((cycles * progress) % 1)))
return ret
super(WarmupCosineWithHardRestartsSchedule, self).__init__(optimizer, lr_lambda, last_epoch=last_epoch)
class WarmupConstantSchedule(LambdaLR):
"""
Linearly increases learning rate from 0 to 1 over `warmup` fraction of training steps.
Keeps learning rate equal to 1. after warmup.
"""
def __init__(self, optimizer, warmup_steps, last_epoch=-1):
def lr_lambda(step):
if step < warmup_steps:
return step / warmup_steps
return 1.
super(WarmupConstantSchedule, self).__init__(optimizer, lr_lambda, last_epoch=last_epoch)
class WarmupLinearSchedule(LambdaLR):
"""
Linearly increases learning rate from 0 to 1 over `warmup` fraction of training steps.
Linearly decreases learning rate from 1. to 0. over remaining `1 - warmup` steps.
"""
def __init__(self, optimizer, warmup_steps, t_total, last_epoch=-1):
def lr_lambda(step):
if step < warmup_steps:
return step / max(1, warmup_steps)
return (t_total - step) / max(1, t_total - warmup_steps)
super(WarmupLinearSchedule, self).__init__(optimizer, lr_lambda, last_epoch=last_epoch)
class AdamW(Optimizer):
""" Implements Adam algorithm with weight decay fix.
Parameters:
lr: learning rate
warmup: portion of t_total for the warmup, -1 means no warmup. Default: -1
t_total: total number of training steps for the learning
rate schedule, -1 means constant learning rate of 1. (no warmup regardless of warmup setting). Default: -1
schedule: schedule to use for the warmup (see above).
Can be `'warmup_linear'`, `'warmup_constant'`, `'warmup_cosine'`, `'none'`, `None` or a `_LRSchedule` object (see below).
If `None` or `'none'`, learning rate is always kept constant.
Default : `'warmup_linear'`
b1: Adams b1. Default: 0.9
b2: Adams b2. Default: 0.999
e: Adams epsilon. Default: 1e-6
weight_decay: Weight decay. Default: 0.01
max_grad_norm: Maximum norm for the gradients (-1 means no clipping). Default: 1.0
correct_bias: can be set to False to avoid correcting bias in Adam (e.g. like in Bert repository)
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-6, weight_decay=0.01, correct_bias=True):
if lr < 0.0:
raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter: {} - should be in [0.0, 1.0[".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter: {} - should be in [0.0, 1.0[".format(betas[1] ))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(e))
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay,
correct_bias=correct_bias)
super(BertAdam, self).__init__(params, defaults)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p.data)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
beta1, beta2 = group['betas']
state['step'] += 1
# Decay the first and second moment running average coefficient
# In-place operations to update the averages at the same time
exp_avg.mul_(beta1).add_(1 - beta1, grad)
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
denom = exp_avg_sq.sqrt().add_(group['eps'])
step_size = group['lr']
if group['correct_bias']: # No bias correction for Bert
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
step_size = step_size * math.sqrt(bias_correction2) / bias_correction1
p.data.addcdiv_(-step_size, exp_avg, denom)
# Just adding the square of the weights to the loss function is *not*
# the correct way of using L2 regularization/weight decay with Adam,
# since that will interact with the m and v parameters in strange ways.
#
# Instead we want to decay the weights in a manner that doesn't interact
# with the m/v parameters. This is equivalent to adding the square
# of the weights to the loss with plain (non-momentum) SGD.
# Add weight decay at the end (fixed version)
if group['weight_decay'] > 0:
p.data.add_(-group['lr'] * group['weight_decay'], p.data)
return loss