transformers/examples/quantization/custom_quantization.py
Parteek 8eaae6bee9
Added Support for Custom Quantization (#35915)
* Added Support for Custom Quantization

* Update code

* code reformatted

* Updated Changes

* Updated Changes

---------

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-02-18 16:14:19 +01:00

79 lines
2.3 KiB
Python

import json
from typing import Any, Dict
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.quantizers import HfQuantizer, register_quantization_config, register_quantizer
from transformers.utils.quantization_config import QuantizationConfigMixin
@register_quantization_config("custom")
class CustomConfig(QuantizationConfigMixin):
def __init__(self):
self.quant_method = "custom"
self.bits = 8
def to_dict(self) -> Dict[str, Any]:
output = {
"num_bits": self.bits,
}
return output
def __repr__(self):
config_dict = self.to_dict()
return f"{self.__class__.__name__} {json.dumps(config_dict, indent=2, sort_keys=True)}\n"
def to_diff_dict(self) -> Dict[str, Any]:
config_dict = self.to_dict()
default_config_dict = CustomConfig().to_dict()
serializable_config_dict = {}
for key, value in config_dict.items():
if value != default_config_dict[key]:
serializable_config_dict[key] = value
return serializable_config_dict
@register_quantizer("custom")
class CustomQuantizer(HfQuantizer):
def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs):
super().__init__(quantization_config, **kwargs)
self.quantization_config = quantization_config
self.scale_map = {}
self.device = kwargs.get("device", "cuda" if torch.cuda.is_available() else "cpu")
self.torch_dtype = kwargs.get("torch_dtype", torch.float32)
def _process_model_before_weight_loading(self, model, **kwargs):
return True
def _process_model_after_weight_loading(self, model, **kwargs):
return True
def is_serializable(self) -> bool:
return True
def is_trainable(self) -> bool:
return False
model_8bit = AutoModelForCausalLM.from_pretrained(
"facebook/opt-350m", quantization_config=CustomConfig(), torch_dtype="auto"
)
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
input_text = "once there is"
inputs = tokenizer(input_text, return_tensors="pt")
output = model_8bit.generate(
**inputs,
max_length=100,
num_return_sequences=1,
no_repeat_ngram_size=2,
)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(generated_text)