mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00
34 lines
1.1 KiB
Python
Executable File
34 lines
1.1 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# coding: utf-8
|
|
|
|
# this script creates a tiny model that is useful inside tests, when we just want to test that the machinery works,
|
|
# without needing to the check the quality of the outcomes.
|
|
# it will be used then as "stas/tiny-wmt19-en-de"
|
|
|
|
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration
|
|
mname = "facebook/wmt19-en-de"
|
|
tokenizer = FSMTTokenizer.from_pretrained(mname)
|
|
# get the correct vocab sizes, etc. from the master model
|
|
config = FSMTConfig.from_pretrained(mname)
|
|
config.update(dict(
|
|
d_model=4,
|
|
encoder_layers=1, decoder_layers=1,
|
|
encoder_ffn_dim=4, decoder_ffn_dim=4,
|
|
encoder_attention_heads=1, decoder_attention_heads=1))
|
|
|
|
tiny_model = FSMTForConditionalGeneration(config)
|
|
print(f"num of params {tiny_model.num_parameters()}")
|
|
# Test it
|
|
batch = tokenizer.prepare_seq2seq_batch(["Making tiny model"])
|
|
outputs = tiny_model(**batch, return_dict=True)
|
|
|
|
print(len(outputs.logits[0]))
|
|
# Save
|
|
mname_tiny = "tiny-wmt19-en-de"
|
|
tiny_model.half() # makes it smaller
|
|
tiny_model.save_pretrained(mname_tiny)
|
|
tokenizer.save_pretrained(mname_tiny)
|
|
|
|
# Upload
|
|
# transformers-cli upload tiny-wmt19-en-de
|