transformers/examples/research_projects/vqgan-clip/loaders.py
Erwann Millon ea55bd86b9
Add VQGAN-CLIP research project (#21329)
* Add VQGAN-CLIP research project

* fixed style issues

* Update examples/research_projects/vqgan-clip/README.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update examples/research_projects/vqgan-clip/VQGAN_CLIP.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update examples/research_projects/vqgan-clip/requirements.txt

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update examples/research_projects/vqgan-clip/README.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update examples/research_projects/vqgan-clip/VQGAN_CLIP.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update examples/research_projects/vqgan-clip/VQGAN_CLIP.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update examples/research_projects/vqgan-clip/VQGAN_CLIP.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update examples/research_projects/vqgan-clip/loaders.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* replace CLIPProcessor with tokenizer, change asserts to exceptions

* rm unused import

* remove large files (jupyter notebook linked in readme, imgs migrated to hf dataset)

* add tokenizers dependency

* Remove comment

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* rm model checkpoints

---------

Co-authored-by: Erwann Millon <erwann@Erwanns-MacBook-Air.local>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-02-02 14:45:35 -05:00

76 lines
2.2 KiB
Python

import importlib
import torch
import yaml
from omegaconf import OmegaConf
from taming.models.vqgan import VQModel
def load_config(config_path, display=False):
config = OmegaConf.load(config_path)
if display:
print(yaml.dump(OmegaConf.to_container(config)))
return config
def load_vqgan(device, conf_path=None, ckpt_path=None):
if conf_path is None:
conf_path = "./model_checkpoints/vqgan_only.yaml"
config = load_config(conf_path, display=False)
model = VQModel(**config.model.params)
if ckpt_path is None:
ckpt_path = "./model_checkpoints/vqgan_only.pt"
sd = torch.load(ckpt_path, map_location=device)
if ".ckpt" in ckpt_path:
sd = sd["state_dict"]
model.load_state_dict(sd, strict=True)
model.to(device)
del sd
return model
def reconstruct_with_vqgan(x, model):
z, _, [_, _, indices] = model.encode(x)
print(f"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}")
xrec = model.decode(z)
return xrec
def get_obj_from_str(string, reload=False):
module, cls = string.rsplit(".", 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def instantiate_from_config(config):
if "target" not in config:
raise KeyError("Expected key `target` to instantiate.")
return get_obj_from_str(config["target"])(**config.get("params", dict()))
def load_model_from_config(config, sd, gpu=True, eval_mode=True):
model = instantiate_from_config(config)
if sd is not None:
model.load_state_dict(sd)
if gpu:
model.cuda()
if eval_mode:
model.eval()
return {"model": model}
def load_model(config, ckpt, gpu, eval_mode):
# load the specified checkpoint
if ckpt:
pl_sd = torch.load(ckpt, map_location="cpu")
global_step = pl_sd["global_step"]
print(f"loaded model from global step {global_step}.")
else:
pl_sd = {"state_dict": None}
global_step = None
model = load_model_from_config(config.model, pl_sd["state_dict"], gpu=gpu, eval_mode=eval_mode)["model"]
return model, global_step