transformers/tests/test_tokenization_lxmert.py
Antonio V Mendoza ea2c6f1afc
Adding the LXMERT pretraining model (MultiModal languageXvision) to HuggingFace's suite of models (#5793)
* added template files for LXMERT and competed the configuration_lxmert.py

* added modeling, tokization, testing, and finishing touched for lxmert [yet to be tested]

* added model card for lxmert

* cleaning up lxmert code

* Update src/transformers/modeling_lxmert.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update src/transformers/modeling_tf_lxmert.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update src/transformers/modeling_tf_lxmert.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update src/transformers/modeling_lxmert.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* tested torch lxmert, changed documtention, updated outputs, and other small fixes

* Update src/transformers/convert_pytorch_checkpoint_to_tf2.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update src/transformers/convert_pytorch_checkpoint_to_tf2.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update src/transformers/convert_pytorch_checkpoint_to_tf2.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* renaming, other small issues, did not change TF code in this commit

* added lxmert question answering model in pytorch

* added capability to edit number of qa labels for lxmert

* made answer optional for lxmert question answering

* add option to return hidden_states for lxmert

* changed default qa labels for lxmert

* changed config archive path

* squshing 3 commits: merged UI + testing improvments + more UI and testing

* changed some variable names for lxmert

* TF LXMERT

* Various fixes to LXMERT

* Final touches to LXMERT

* AutoTokenizer order

* Add LXMERT to index.rst and README.md

* Merge commit test fixes + Style update

* TensorFlow 2.3.0 sequential model changes variable names

Remove inherited test

* Update src/transformers/modeling_tf_pytorch_utils.py

* Update docs/source/model_doc/lxmert.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/model_doc/lxmert.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/modeling_tf_lxmert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* added suggestions

* Fixes

* Final fixes for TF model

* Fix docs

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2020-09-03 04:02:25 -04:00

66 lines
2.1 KiB
Python

# coding=utf-8
# Copyright 2018 LXMERT Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import unittest
from transformers.tokenization_bert import VOCAB_FILES_NAMES
from transformers.tokenization_lxmert import LxmertTokenizer
from .test_tokenization_common import TokenizerTesterMixin
class LxmertTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = LxmertTokenizer
def setUp(self):
super().setUp()
vocab_tokens = [
"[UNK]",
"[CLS]",
"[SEP]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
def get_tokenizer(self, **kwargs):
return LxmertTokenizer.from_pretrained(self.tmpdirname, **kwargs)
def get_input_output_texts(self, tokenizer):
input_text = "UNwant\u00E9d,running"
output_text = "unwanted, running"
return input_text, output_text
def test_full_tokenizer(self):
tokenizer = self.tokenizer_class(self.vocab_file)
tokens = tokenizer.tokenize("UNwant\u00E9d,running")
self.assertListEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"])
self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [7, 4, 5, 10, 8, 9])