transformers/tests/pipelines/test_pipelines_automatic_speech_recognition.py
Arthur e9b4800dda
[Whisper] Fix timestamp processor (#21187)
* add draft logit processor

* add template functions

* update timesapmt processor parameters

* draft script

* simplify code

* cleanup

* fixup and clean

* update pipeline

* style

* clean up previous idea

* add tokenization utils

* update tokenizer and asr output

* fit whisper type

* style and update test

* clean test

* style test

* update tests

* update error test

* udpate code (not based on review yet)

* update tokenization

* update asr pipeline

* update code

* cleanup and update test

* fmt

* remove text verificatino

* cleanup

* cleanup

* add model test

* update tests

* update code add docstring

* update code and add docstring

* fix pipeline tests

* add draft logit processor

add template functions

update timesapmt processor parameters

draft script

simplify code

cleanup

fixup and clean

update pipeline

style

clean up previous idea

add tokenization utils

update tokenizer and asr output

fit whisper type

style and update test

clean test

style test

update tests

update error test

udpate code (not based on review yet)

update tokenization

update asr pipeline

update code

cleanup and update test

fmt

remove text verificatino

cleanup

cleanup

add model test

update tests

update code add docstring

update code and add docstring

fix pipeline tests

* Small update.

* Fixup.

* Tmp.

* More support.

* Making `forced_decoder_ids` non mandatory for users to set.

* update and fix first bug

* properly process sequence right after merge if last

* tofo

* allow list inputs + compute begin index better

* start adding tests

* add the 3 edge cases

* style

* format sequences

* fixup

* update

* update

* style

* test passes, edge cases should be good

* update last value

* remove Trie

* update tests and expec ted values

* handle bigger chunk_length

* clean tests a bit

* refactor chunk iter and clean pipeline

* update tests

* style

* refactor chunk iter and clean pipeline

* upade

* resolve comments

* Apply suggestions from code review

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* take stride right into account

* update test expected values

* Update code based on review

Co-authored-by: sgugger <sylvain.gugger@gmail.com>

* major refactor

* add correct strides for tests

* Update src/transformers/pipelines/automatic_speech_recognition.py

* fix whisper timestamp test

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: sgugger <sylvain.gugger@gmail.com>
2023-01-19 16:25:56 +01:00

1192 lines
51 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import pytest
from datasets import load_dataset
from huggingface_hub import snapshot_download
from transformers import (
MODEL_FOR_CTC_MAPPING,
MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
AutoFeatureExtractor,
AutoProcessor,
AutoTokenizer,
Speech2TextForConditionalGeneration,
Wav2Vec2ForCTC,
WhisperForConditionalGeneration,
WhisperProcessor,
)
from transformers.pipelines import AutomaticSpeechRecognitionPipeline, pipeline
from transformers.pipelines.audio_utils import chunk_bytes_iter
from transformers.pipelines.automatic_speech_recognition import _find_timestamp_sequence, chunk_iter
from transformers.testing_utils import (
is_torch_available,
nested_simplify,
require_pyctcdecode,
require_tf,
require_torch,
require_torchaudio,
slow,
)
from .test_pipelines_common import ANY, PipelineTestCaseMeta
if is_torch_available():
import torch
# We can't use this mixin because it assumes TF support.
# from .test_pipelines_common import CustomInputPipelineCommonMixin
class AutomaticSpeechRecognitionPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
model_mapping = {
k: v
for k, v in (list(MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING.items()) if MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING else [])
+ (MODEL_FOR_CTC_MAPPING.items() if MODEL_FOR_CTC_MAPPING else [])
}
def get_test_pipeline(self, model, tokenizer, feature_extractor):
if tokenizer is None:
# Side effect of no Fast Tokenizer class for these model, so skipping
# But the slow tokenizer test should still run as they're quite small
self.skipTest("No tokenizer available")
return
# return None, None
speech_recognizer = AutomaticSpeechRecognitionPipeline(
model=model, tokenizer=tokenizer, feature_extractor=feature_extractor
)
# test with a raw waveform
audio = np.zeros((34000,))
audio2 = np.zeros((14000,))
return speech_recognizer, [audio, audio2]
def run_pipeline_test(self, speech_recognizer, examples):
audio = np.zeros((34000,))
outputs = speech_recognizer(audio)
self.assertEqual(outputs, {"text": ANY(str)})
# Striding
audio = {"raw": audio, "stride": (0, 4000), "sampling_rate": speech_recognizer.feature_extractor.sampling_rate}
if speech_recognizer.type == "ctc":
outputs = speech_recognizer(audio)
self.assertEqual(outputs, {"text": ANY(str)})
elif "Whisper" in speech_recognizer.model.__class__.__name__:
outputs = speech_recognizer(audio)
self.assertEqual(outputs, {"text": ANY(str)})
else:
# Non CTC models cannot use striding.
with self.assertRaises(ValueError):
outputs = speech_recognizer(audio)
# Timestamps
audio = np.zeros((34000,))
if speech_recognizer.type == "ctc":
outputs = speech_recognizer(audio, return_timestamps="char")
self.assertIsInstance(outputs["chunks"], list)
n = len(outputs["chunks"])
self.assertEqual(
outputs,
{
"text": ANY(str),
"chunks": [{"text": ANY(str), "timestamp": (ANY(float), ANY(float))} for i in range(n)],
},
)
outputs = speech_recognizer(audio, return_timestamps="word")
self.assertIsInstance(outputs["chunks"], list)
n = len(outputs["chunks"])
self.assertEqual(
outputs,
{
"text": ANY(str),
"chunks": [{"text": ANY(str), "timestamp": (ANY(float), ANY(float))} for i in range(n)],
},
)
elif "Whisper" in speech_recognizer.model.__class__.__name__:
outputs = speech_recognizer(audio, return_timestamps=True)
self.assertIsInstance(outputs["chunks"], list)
nb_chunks = len(outputs["chunks"])
self.assertGreaterThan(nb_chunks, 0)
self.assertEqual(
outputs,
{
"text": ANY(str),
"chunks": [{"text": ANY(str), "timestamp": (ANY(float), ANY(float))} for i in range(nb_chunks)],
},
)
else:
# Non CTC models cannot use return_timestamps
with self.assertRaisesRegex(ValueError, "^We cannot return_timestamps yet on non-ctc models !$"):
outputs = speech_recognizer(audio, return_timestamps="char")
@require_torch
@slow
def test_pt_defaults(self):
pipeline("automatic-speech-recognition", framework="pt")
@require_torch
def test_small_model_pt(self):
speech_recognizer = pipeline(
task="automatic-speech-recognition",
model="facebook/s2t-small-mustc-en-fr-st",
tokenizer="facebook/s2t-small-mustc-en-fr-st",
framework="pt",
)
waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
output = speech_recognizer(waveform)
self.assertEqual(output, {"text": "(Applaudissements)"})
output = speech_recognizer(waveform, chunk_length_s=10)
self.assertEqual(output, {"text": "(Applaudissements)"})
# Non CTC models cannot use return_timestamps
with self.assertRaisesRegex(
ValueError, "^We cannot return_timestamps yet on non-ctc models apart from Whisper !$"
):
_ = speech_recognizer(waveform, return_timestamps="char")
@slow
@require_torch
def test_whisper_fp16(self):
if not torch.cuda.is_available():
self.skipTest("Cuda is necessary for this test")
speech_recognizer = pipeline(
model="openai/whisper-base",
device=0,
torch_dtype=torch.float16,
)
waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
speech_recognizer(waveform)
@require_torch
def test_small_model_pt_seq2seq(self):
speech_recognizer = pipeline(
model="hf-internal-testing/tiny-random-speech-encoder-decoder",
framework="pt",
)
waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
output = speech_recognizer(waveform)
self.assertEqual(output, {"text": "あл ش 湯 清 ه ܬ া लᆨしث ल eか u w 全 u"})
@require_torch
def test_small_model_pt_seq2seq_gen_kwargs(self):
speech_recognizer = pipeline(
model="hf-internal-testing/tiny-random-speech-encoder-decoder",
framework="pt",
)
waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
output = speech_recognizer(waveform, max_new_tokens=10, generate_kwargs={"num_beams": 2})
self.assertEqual(output, {"text": "あл † γ ت ב オ 束 泣 足"})
@slow
@require_torch
@require_pyctcdecode
def test_large_model_pt_with_lm(self):
dataset = load_dataset("Narsil/asr_dummy")
filename = dataset["test"][3]["file"]
speech_recognizer = pipeline(
task="automatic-speech-recognition",
model="patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm",
framework="pt",
)
self.assertEqual(speech_recognizer.type, "ctc_with_lm")
output = speech_recognizer(filename)
self.assertEqual(
output,
{"text": "y en las ramas medio sumergidas revoloteaban algunos pájaros de quimérico y legendario plumaje"},
)
# Override back to pure CTC
speech_recognizer.type = "ctc"
output = speech_recognizer(filename)
# plumajre != plumaje
self.assertEqual(
output,
{
"text": (
"y en las ramas medio sumergidas revoloteaban algunos pájaros de quimérico y legendario plumajre"
)
},
)
speech_recognizer.type = "ctc_with_lm"
# Simple test with CTC with LM, chunking + timestamps
output = speech_recognizer(filename, chunk_length_s=2.0, return_timestamps="word")
self.assertEqual(
output,
{
"text": (
"y en las ramas medio sumergidas revoloteaban algunos pájaros de quimérico y legendario plumajcri"
),
"chunks": [
{"text": "y", "timestamp": (0.52, 0.54)},
{"text": "en", "timestamp": (0.6, 0.68)},
{"text": "las", "timestamp": (0.74, 0.84)},
{"text": "ramas", "timestamp": (0.94, 1.24)},
{"text": "medio", "timestamp": (1.32, 1.52)},
{"text": "sumergidas", "timestamp": (1.56, 2.22)},
{"text": "revoloteaban", "timestamp": (2.36, 3.0)},
{"text": "algunos", "timestamp": (3.06, 3.38)},
{"text": "pájaros", "timestamp": (3.46, 3.86)},
{"text": "de", "timestamp": (3.92, 4.0)},
{"text": "quimérico", "timestamp": (4.08, 4.6)},
{"text": "y", "timestamp": (4.66, 4.68)},
{"text": "legendario", "timestamp": (4.74, 5.26)},
{"text": "plumajcri", "timestamp": (5.34, 5.74)},
],
},
)
@require_tf
def test_small_model_tf(self):
self.skipTest("Tensorflow not supported yet.")
@require_torch
def test_torch_small_no_tokenizer_files(self):
# test that model without tokenizer file cannot be loaded
with pytest.raises(OSError):
pipeline(
task="automatic-speech-recognition",
model="patrickvonplaten/tiny-wav2vec2-no-tokenizer",
framework="pt",
)
@require_torch
@slow
def test_torch_large(self):
speech_recognizer = pipeline(
task="automatic-speech-recognition",
model="facebook/wav2vec2-base-960h",
tokenizer="facebook/wav2vec2-base-960h",
framework="pt",
)
waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
output = speech_recognizer(waveform)
self.assertEqual(output, {"text": ""})
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
filename = ds[40]["file"]
output = speech_recognizer(filename)
self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})
@require_torch
@slow
def test_torch_whisper(self):
speech_recognizer = pipeline(
task="automatic-speech-recognition",
model="openai/whisper-tiny",
framework="pt",
)
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
filename = ds[40]["file"]
output = speech_recognizer(filename)
self.assertEqual(output, {"text": " A man said to the universe, Sir, I exist."})
output = speech_recognizer([filename], chunk_length_s=5, batch_size=4)
self.assertEqual(output, [{"text": " A man said to the universe, Sir, I exist."}])
@slow
def test_find_longest_common_subsequence(self):
max_source_positions = 1500
processor = AutoProcessor.from_pretrained("openai/whisper-tiny")
previous_sequence = [[51492, 406, 3163, 1953, 466, 13, 51612, 51612]]
self.assertEqual(
processor.decode(previous_sequence[0], output_offsets=True),
{
"text": " not worth thinking about.",
"offsets": [{"text": " not worth thinking about.", "timestamp": (22.56, 24.96)}],
},
)
# Merge when the previous sequence is a suffix of the next sequence
# fmt: off
next_sequences_1 = [
[50364, 295, 6177, 3391, 11, 19817, 3337, 507, 307, 406, 3163, 1953, 466, 13, 50614, 50614, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 50834, 50257]
]
# fmt: on
self.assertEqual(
processor.decode(next_sequences_1[0], output_offsets=True),
{
"text": (
" of spectators, retrievality is not worth thinking about. His instant panic was followed by a"
" small, sharp blow high on his chest.<|endoftext|>"
),
"offsets": [
{"text": " of spectators, retrievality is not worth thinking about.", "timestamp": (0.0, 5.0)},
{
"text": " His instant panic was followed by a small, sharp blow high on his chest.",
"timestamp": (5.0, 9.4),
},
],
},
)
merge = _find_timestamp_sequence(
[[previous_sequence, (480_000, 0, 0)], [next_sequences_1, (480_000, 120_000, 0)]],
processor.tokenizer,
processor.feature_extractor,
max_source_positions,
)
# fmt: off
self.assertEqual(
merge,
[51492, 406, 3163, 1953, 466, 13, 51739, 51739, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 51959],
)
# fmt: on
self.assertEqual(
processor.decode(merge, output_offsets=True),
{
"text": (
" not worth thinking about. His instant panic was followed by a small, sharp blow high on his"
" chest."
),
"offsets": [
{"text": " not worth thinking about.", "timestamp": (22.56, 27.5)},
{
"text": " His instant panic was followed by a small, sharp blow high on his chest.",
"timestamp": (27.5, 31.900000000000002),
},
],
},
)
# Merge when the sequence is in the middle of the 1st next sequence
# fmt: off
next_sequences_2 = [
[50364, 295, 6177, 3391, 11, 19817, 3337, 507, 307, 406, 3163, 1953, 466, 13, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 50834, 50257]
]
# fmt: on
# {'text': ' of spectators, retrievality is not worth thinking about. His instant panic was followed by a small, sharp blow high on his chest.','timestamp': (0.0, 9.4)}
merge = _find_timestamp_sequence(
[[previous_sequence, (480_000, 0, 0)], [next_sequences_2, (480_000, 120_000, 0)]],
processor.tokenizer,
processor.feature_extractor,
max_source_positions,
)
# fmt: off
self.assertEqual(
merge,
[51492, 406, 3163, 1953, 466, 13, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 51959],
)
# fmt: on
self.assertEqual(
processor.decode(merge, output_offsets=True),
{
"text": (
" not worth thinking about. His instant panic was followed by a small, sharp blow high on his"
" chest."
),
"offsets": [
{
"text": (
" not worth thinking about. His instant panic was followed by a small, sharp blow high on"
" his chest."
),
"timestamp": (22.56, 31.900000000000002),
},
],
},
)
# Merge when the previous sequence is not included in the current sequence
# fmt: off
next_sequences_3 = [[50364, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 50584, 50257]]
# fmt: on
# {'text': ' His instant panic was followed by a small, sharp blow high on his chest.','timestamp': (0.0, 9.4)}
merge = _find_timestamp_sequence(
[[previous_sequence, (480_000, 0, 0)], [next_sequences_3, (480_000, 120_000, 0)]],
processor.tokenizer,
processor.feature_extractor,
max_source_positions,
)
# fmt: off
self.assertEqual(
merge,
[51492, 406, 3163, 1953, 466, 13, 51612, 51612, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 51832],
)
# fmt: on
self.assertEqual(
processor.decode(merge, output_offsets=True),
{
"text": (
" not worth thinking about. His instant panic was followed by a small, sharp blow high on his"
" chest."
),
"offsets": [
{"text": " not worth thinking about.", "timestamp": (22.56, 24.96)},
{
"text": " His instant panic was followed by a small, sharp blow high on his chest.",
"timestamp": (24.96, 29.36),
},
],
},
)
# last case is when the sequence is not in the first next predicted start and end of timestamp
# fmt: off
next_sequences_3 = [
[50364, 2812, 9836, 14783, 390, 406, 3163, 1953, 466, 13, 50634, 50634, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 50934]
]
# fmt: on
merge = _find_timestamp_sequence(
[[previous_sequence, (480_000, 0, 0)], [next_sequences_3, (480_000, 167_000, 0)]],
processor.tokenizer,
processor.feature_extractor,
max_source_positions,
)
# fmt: off
self.assertEqual(
merge,
[51492, 406, 3163, 1953, 466, 13, 51612, 51612, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 51912]
)
# fmt: on
self.assertEqual(
processor.decode(merge, output_offsets=True),
{
"text": (
" not worth thinking about. His instant panic was followed by a small, sharp blow high on his"
" chest."
),
"offsets": [
{"text": " not worth thinking about.", "timestamp": (22.56, 24.96)},
{
"text": " His instant panic was followed by a small, sharp blow high on his chest.",
"timestamp": (24.96, 30.96),
},
],
},
)
@slow
@require_torch
def test_whisper_timestamp_prediction(self):
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
array = np.concatenate(
[ds[40]["audio"]["array"], ds[41]["audio"]["array"], ds[42]["audio"]["array"], ds[43]["audio"]["array"]]
)
pipe = pipeline(
model="openai/whisper-small",
return_timestamps=True,
)
output = pipe(ds[40]["audio"])
self.assertDictEqual(
output,
{
"text": " A man said to the universe, Sir, I exist.",
"chunks": [{"text": " A man said to the universe, Sir, I exist.", "timestamp": (0.0, 4.26)}],
},
)
pipe = pipeline(
model="openai/whisper-small",
return_timestamps=True,
)
output = pipe(array, chunk_length_s=10)
self.assertDictEqual(
output,
{
"chunks": [
{"text": " A man said to the universe, Sir, I exist.", "timestamp": (0.0, 5.5)},
{
"text": (
" Sweat covered Brion's body, trickling into the "
"tight-loan cloth that was the only garment he wore, the "
"cut"
),
"timestamp": (5.5, 11.94),
},
{
"text": (
" on his chest still dripping blood, the ache of his "
"overstrained eyes, even the soaring arena around him "
"with"
),
"timestamp": (11.94, 19.6),
},
{
"text": " the thousands of spectators, retrievality is not worth thinking about.",
"timestamp": (19.6, 24.98),
},
{
"text": " His instant panic was followed by a small, sharp blow high on his chest.",
"timestamp": (24.98, 30.98),
},
],
"text": (
" A man said to the universe, Sir, I exist. Sweat covered Brion's "
"body, trickling into the tight-loan cloth that was the only garment "
"he wore, the cut on his chest still dripping blood, the ache of his "
"overstrained eyes, even the soaring arena around him with the "
"thousands of spectators, retrievality is not worth thinking about. "
"His instant panic was followed by a small, sharp blow high on his "
"chest."
),
},
)
output = pipe(array)
self.assertDictEqual(
output,
{
"chunks": [
{"text": " A man said to the universe, Sir, I exist.", "timestamp": (0.0, 5.5)},
{
"text": (
" Sweat covered Brion's body, trickling into the "
"tight-loan cloth that was the only garment"
),
"timestamp": (5.5, 10.18),
},
{"text": " he wore.", "timestamp": (10.18, 11.68)},
{"text": " The cut on his chest still dripping blood.", "timestamp": (11.68, 14.92)},
{"text": " The ache of his overstrained eyes.", "timestamp": (14.92, 17.6)},
{
"text": (
" Even the soaring arena around him with the thousands of spectators were trivialities"
),
"timestamp": (17.6, 22.56),
},
{"text": " not worth thinking about.", "timestamp": (22.56, 24.96)},
],
"text": (
" A man said to the universe, Sir, I exist. Sweat covered Brion's "
"body, trickling into the tight-loan cloth that was the only garment "
"he wore. The cut on his chest still dripping blood. The ache of his "
"overstrained eyes. Even the soaring arena around him with the "
"thousands of spectators were trivialities not worth thinking about."
),
},
)
@require_torch
@slow
def test_torch_speech_encoder_decoder(self):
speech_recognizer = pipeline(
task="automatic-speech-recognition",
model="facebook/s2t-wav2vec2-large-en-de",
feature_extractor="facebook/s2t-wav2vec2-large-en-de",
framework="pt",
)
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
filename = ds[40]["file"]
output = speech_recognizer(filename)
self.assertEqual(output, {"text": 'Ein Mann sagte zum Universum : " Sir, ich existiert! "'})
@slow
@require_torch
def test_simple_wav2vec2(self):
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
asr = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)
waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
output = asr(waveform)
self.assertEqual(output, {"text": ""})
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
filename = ds[40]["file"]
output = asr(filename)
self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})
filename = ds[40]["file"]
with open(filename, "rb") as f:
data = f.read()
output = asr(data)
self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})
@slow
@require_torch
@require_torchaudio
def test_simple_s2t(self):
model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-mustc-en-it-st")
tokenizer = AutoTokenizer.from_pretrained("facebook/s2t-small-mustc-en-it-st")
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/s2t-small-mustc-en-it-st")
asr = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)
waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
output = asr(waveform)
self.assertEqual(output, {"text": "(Applausi)"})
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
filename = ds[40]["file"]
output = asr(filename)
self.assertEqual(output, {"text": "Un uomo disse all'universo: \"Signore, io esisto."})
filename = ds[40]["file"]
with open(filename, "rb") as f:
data = f.read()
output = asr(data)
self.assertEqual(output, {"text": "Un uomo disse all'universo: \"Signore, io esisto."})
@slow
@require_torch
@require_torchaudio
def test_simple_whisper_asr(self):
speech_recognizer = pipeline(
task="automatic-speech-recognition",
model="openai/whisper-tiny.en",
framework="pt",
)
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
filename = ds[0]["file"]
output = speech_recognizer(filename)
self.assertEqual(
output,
{"text": " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."},
)
@slow
@require_torch
@require_torchaudio
def test_simple_whisper_translation(self):
speech_recognizer = pipeline(
task="automatic-speech-recognition",
model="openai/whisper-large",
framework="pt",
)
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
filename = ds[40]["file"]
output = speech_recognizer(filename)
self.assertEqual(output, {"text": " A man said to the universe, Sir, I exist."})
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large")
tokenizer = AutoTokenizer.from_pretrained("openai/whisper-large")
feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-large")
speech_recognizer_2 = AutomaticSpeechRecognitionPipeline(
model=model, tokenizer=tokenizer, feature_extractor=feature_extractor
)
output_2 = speech_recognizer_2(filename)
self.assertEqual(output, output_2)
processor = WhisperProcessor(feature_extractor, tokenizer)
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(task="transcribe", language="it")
speech_translator = AutomaticSpeechRecognitionPipeline(
model=model, tokenizer=tokenizer, feature_extractor=feature_extractor
)
output_3 = speech_translator(filename)
self.assertEqual(output_3, {"text": " Un uomo ha detto all'universo, Sir, esiste."})
@slow
@require_torch
@require_torchaudio
def test_xls_r_to_en(self):
speech_recognizer = pipeline(
task="automatic-speech-recognition",
model="facebook/wav2vec2-xls-r-1b-21-to-en",
feature_extractor="facebook/wav2vec2-xls-r-1b-21-to-en",
framework="pt",
)
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
filename = ds[40]["file"]
output = speech_recognizer(filename)
self.assertEqual(output, {"text": "A man said to the universe: “Sir, I exist."})
@slow
@require_torch
@require_torchaudio
def test_xls_r_from_en(self):
speech_recognizer = pipeline(
task="automatic-speech-recognition",
model="facebook/wav2vec2-xls-r-1b-en-to-15",
feature_extractor="facebook/wav2vec2-xls-r-1b-en-to-15",
framework="pt",
)
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
filename = ds[40]["file"]
output = speech_recognizer(filename)
self.assertEqual(output, {"text": "Ein Mann sagte zu dem Universum, Sir, ich bin da."})
@slow
@require_torch
@require_torchaudio
def test_speech_to_text_leveraged(self):
speech_recognizer = pipeline(
task="automatic-speech-recognition",
model="patrickvonplaten/wav2vec2-2-bart-base",
feature_extractor="patrickvonplaten/wav2vec2-2-bart-base",
tokenizer=AutoTokenizer.from_pretrained("patrickvonplaten/wav2vec2-2-bart-base"),
framework="pt",
)
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
filename = ds[40]["file"]
output = speech_recognizer(filename)
self.assertEqual(output, {"text": "a man said to the universe sir i exist"})
@require_torch
def test_chunking_fast(self):
speech_recognizer = pipeline(
task="automatic-speech-recognition",
model="hf-internal-testing/tiny-random-wav2vec2",
chunk_length_s=10.0,
)
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
audio = ds[40]["audio"]["array"]
n_repeats = 2
audio_tiled = np.tile(audio, n_repeats)
output = speech_recognizer([audio_tiled], batch_size=2)
self.assertEqual(output, [{"text": ANY(str)}])
self.assertEqual(output[0]["text"][:6], "ZBT ZC")
@require_torch
def test_return_timestamps_ctc_fast(self):
speech_recognizer = pipeline(
task="automatic-speech-recognition",
model="hf-internal-testing/tiny-random-wav2vec2",
)
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
# Take short audio to keep the test readable
audio = ds[40]["audio"]["array"][:800]
output = speech_recognizer(audio, return_timestamps="char")
self.assertEqual(
output,
{
"text": "ZBT ZX G",
"chunks": [
{"text": " ", "timestamp": (0.0, 0.012)},
{"text": "Z", "timestamp": (0.012, 0.016)},
{"text": "B", "timestamp": (0.016, 0.02)},
{"text": "T", "timestamp": (0.02, 0.024)},
{"text": " ", "timestamp": (0.024, 0.028)},
{"text": "Z", "timestamp": (0.028, 0.032)},
{"text": "X", "timestamp": (0.032, 0.036)},
{"text": " ", "timestamp": (0.036, 0.04)},
{"text": "G", "timestamp": (0.04, 0.044)},
],
},
)
output = speech_recognizer(audio, return_timestamps="word")
self.assertEqual(
output,
{
"text": "ZBT ZX G",
"chunks": [
{"text": "ZBT", "timestamp": (0.012, 0.024)},
{"text": "ZX", "timestamp": (0.028, 0.036)},
{"text": "G", "timestamp": (0.04, 0.044)},
],
},
)
@require_torch
@require_pyctcdecode
def test_chunking_fast_with_lm(self):
speech_recognizer = pipeline(
model="hf-internal-testing/processor_with_lm",
chunk_length_s=10.0,
)
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
audio = ds[40]["audio"]["array"]
n_repeats = 2
audio_tiled = np.tile(audio, n_repeats)
# Batch_size = 1
output1 = speech_recognizer([audio_tiled], batch_size=1)
self.assertEqual(output1, [{"text": ANY(str)}])
self.assertEqual(output1[0]["text"][:6], "<s> <s")
# batch_size = 2
output2 = speech_recognizer([audio_tiled], batch_size=2)
self.assertEqual(output2, [{"text": ANY(str)}])
self.assertEqual(output2[0]["text"][:6], "<s> <s")
# TODO There is an offby one error because of the ratio.
# Maybe logits get affected by the padding on this random
# model is more likely. Add some masking ?
# self.assertEqual(output1, output2)
@require_torch
@require_pyctcdecode
def test_with_lm_fast(self):
speech_recognizer = pipeline(
model="hf-internal-testing/processor_with_lm",
)
self.assertEqual(speech_recognizer.type, "ctc_with_lm")
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
audio = ds[40]["audio"]["array"]
n_repeats = 2
audio_tiled = np.tile(audio, n_repeats)
output = speech_recognizer([audio_tiled], batch_size=2)
self.assertEqual(output, [{"text": ANY(str)}])
self.assertEqual(output[0]["text"][:6], "<s> <s")
# Making sure the argument are passed to the decoder
# Since no change happens in the result, check the error comes from
# the `decode_beams` function.
with self.assertRaises(TypeError) as e:
output = speech_recognizer([audio_tiled], decoder_kwargs={"num_beams": 2})
self.assertContains(e.msg, "TypeError: decode_beams() got an unexpected keyword argument 'num_beams'")
output = speech_recognizer([audio_tiled], decoder_kwargs={"beam_width": 2})
@require_torch
@require_pyctcdecode
def test_with_local_lm_fast(self):
local_dir = snapshot_download("hf-internal-testing/processor_with_lm")
speech_recognizer = pipeline(
task="automatic-speech-recognition",
model=local_dir,
)
self.assertEqual(speech_recognizer.type, "ctc_with_lm")
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
audio = ds[40]["audio"]["array"]
n_repeats = 2
audio_tiled = np.tile(audio, n_repeats)
output = speech_recognizer([audio_tiled], batch_size=2)
self.assertEqual(output, [{"text": ANY(str)}])
self.assertEqual(output[0]["text"][:6], "<s> <s")
@require_torch
@slow
def test_chunking_and_timestamps(self):
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
speech_recognizer = pipeline(
task="automatic-speech-recognition",
model=model,
tokenizer=tokenizer,
feature_extractor=feature_extractor,
framework="pt",
chunk_length_s=10.0,
)
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
audio = ds[40]["audio"]["array"]
n_repeats = 10
audio_tiled = np.tile(audio, n_repeats)
output = speech_recognizer([audio_tiled], batch_size=2)
self.assertEqual(output, [{"text": ("A MAN SAID TO THE UNIVERSE SIR I EXIST " * n_repeats).strip()}])
output = speech_recognizer(audio, return_timestamps="char")
self.assertEqual(audio.shape, (74_400,))
self.assertEqual(speech_recognizer.feature_extractor.sampling_rate, 16_000)
# The audio is 74_400 / 16_000 = 4.65s long.
self.assertEqual(
output,
{
"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST",
"chunks": [
{"text": "A", "timestamp": (0.6, 0.62)},
{"text": " ", "timestamp": (0.62, 0.66)},
{"text": "M", "timestamp": (0.68, 0.7)},
{"text": "A", "timestamp": (0.78, 0.8)},
{"text": "N", "timestamp": (0.84, 0.86)},
{"text": " ", "timestamp": (0.92, 0.98)},
{"text": "S", "timestamp": (1.06, 1.08)},
{"text": "A", "timestamp": (1.14, 1.16)},
{"text": "I", "timestamp": (1.16, 1.18)},
{"text": "D", "timestamp": (1.2, 1.24)},
{"text": " ", "timestamp": (1.24, 1.28)},
{"text": "T", "timestamp": (1.28, 1.32)},
{"text": "O", "timestamp": (1.34, 1.36)},
{"text": " ", "timestamp": (1.38, 1.42)},
{"text": "T", "timestamp": (1.42, 1.44)},
{"text": "H", "timestamp": (1.44, 1.46)},
{"text": "E", "timestamp": (1.46, 1.5)},
{"text": " ", "timestamp": (1.5, 1.56)},
{"text": "U", "timestamp": (1.58, 1.62)},
{"text": "N", "timestamp": (1.64, 1.68)},
{"text": "I", "timestamp": (1.7, 1.72)},
{"text": "V", "timestamp": (1.76, 1.78)},
{"text": "E", "timestamp": (1.84, 1.86)},
{"text": "R", "timestamp": (1.86, 1.9)},
{"text": "S", "timestamp": (1.96, 1.98)},
{"text": "E", "timestamp": (1.98, 2.02)},
{"text": " ", "timestamp": (2.02, 2.06)},
{"text": "S", "timestamp": (2.82, 2.86)},
{"text": "I", "timestamp": (2.94, 2.96)},
{"text": "R", "timestamp": (2.98, 3.02)},
{"text": " ", "timestamp": (3.06, 3.12)},
{"text": "I", "timestamp": (3.5, 3.52)},
{"text": " ", "timestamp": (3.58, 3.6)},
{"text": "E", "timestamp": (3.66, 3.68)},
{"text": "X", "timestamp": (3.68, 3.7)},
{"text": "I", "timestamp": (3.9, 3.92)},
{"text": "S", "timestamp": (3.94, 3.96)},
{"text": "T", "timestamp": (4.0, 4.02)},
{"text": " ", "timestamp": (4.06, 4.1)},
],
},
)
output = speech_recognizer(audio, return_timestamps="word")
self.assertEqual(
output,
{
"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST",
"chunks": [
{"text": "A", "timestamp": (0.6, 0.62)},
{"text": "MAN", "timestamp": (0.68, 0.86)},
{"text": "SAID", "timestamp": (1.06, 1.24)},
{"text": "TO", "timestamp": (1.28, 1.36)},
{"text": "THE", "timestamp": (1.42, 1.5)},
{"text": "UNIVERSE", "timestamp": (1.58, 2.02)},
{"text": "SIR", "timestamp": (2.82, 3.02)},
{"text": "I", "timestamp": (3.5, 3.52)},
{"text": "EXIST", "timestamp": (3.66, 4.02)},
],
},
)
output = speech_recognizer(audio, return_timestamps="word", chunk_length_s=2.0)
self.assertEqual(
output,
{
"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST",
"chunks": [
{"text": "A", "timestamp": (0.6, 0.62)},
{"text": "MAN", "timestamp": (0.68, 0.86)},
{"text": "SAID", "timestamp": (1.06, 1.24)},
{"text": "TO", "timestamp": (1.3, 1.36)},
{"text": "THE", "timestamp": (1.42, 1.48)},
{"text": "UNIVERSE", "timestamp": (1.58, 2.02)},
# Tiny change linked to chunking.
{"text": "SIR", "timestamp": (2.84, 3.02)},
{"text": "I", "timestamp": (3.5, 3.52)},
{"text": "EXIST", "timestamp": (3.66, 4.02)},
],
},
)
@require_torch
@slow
def test_chunking_with_lm(self):
speech_recognizer = pipeline(
task="automatic-speech-recognition",
model="patrickvonplaten/wav2vec2-base-100h-with-lm",
chunk_length_s=10.0,
)
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
audio = ds[40]["audio"]["array"]
n_repeats = 10
audio = np.tile(audio, n_repeats)
output = speech_recognizer([audio], batch_size=2)
expected_text = "A MAN SAID TO THE UNIVERSE SIR I EXIST " * n_repeats
expected = [{"text": expected_text.strip()}]
self.assertEqual(output, expected)
@require_torch
def test_chunk_iterator(self):
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
inputs = torch.arange(100).long()
ratio = 1
outs = list(chunk_iter(inputs, feature_extractor, 100, 0, 0, ratio))
self.assertEqual(len(outs), 1)
self.assertEqual([o["stride"] for o in outs], [(100, 0, 0)])
self.assertEqual([o["input_values"].shape for o in outs], [(1, 100)])
self.assertEqual([o["is_last"] for o in outs], [True])
# two chunks no stride
outs = list(chunk_iter(inputs, feature_extractor, 50, 0, 0, ratio))
self.assertEqual(len(outs), 2)
self.assertEqual([o["stride"] for o in outs], [(50, 0, 0), (50, 0, 0)])
self.assertEqual([o["input_values"].shape for o in outs], [(1, 50), (1, 50)])
self.assertEqual([o["is_last"] for o in outs], [False, True])
# two chunks incomplete last
outs = list(chunk_iter(inputs, feature_extractor, 80, 0, 0, ratio))
self.assertEqual(len(outs), 2)
self.assertEqual([o["stride"] for o in outs], [(80, 0, 0), (20, 0, 0)])
self.assertEqual([o["input_values"].shape for o in outs], [(1, 80), (1, 20)])
self.assertEqual([o["is_last"] for o in outs], [False, True])
# one chunk since first is also last, because it contains only data
# in the right strided part we just mark that part as non stride
# This test is specifically crafted to trigger a bug if next chunk
# would be ignored by the fact that all the data would be
# contained in the strided left data.
outs = list(chunk_iter(inputs, feature_extractor, 105, 5, 5, ratio))
self.assertEqual(len(outs), 1)
self.assertEqual([o["stride"] for o in outs], [(100, 0, 0)])
self.assertEqual([o["input_values"].shape for o in outs], [(1, 100)])
self.assertEqual([o["is_last"] for o in outs], [True])
@require_torch
def test_chunk_iterator_stride(self):
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
inputs = torch.arange(100).long()
input_values = feature_extractor(inputs, sampling_rate=feature_extractor.sampling_rate, return_tensors="pt")[
"input_values"
]
ratio = 1
outs = list(chunk_iter(inputs, feature_extractor, 100, 20, 10, ratio))
self.assertEqual(len(outs), 2)
self.assertEqual([o["stride"] for o in outs], [(100, 0, 10), (30, 20, 0)])
self.assertEqual([o["input_values"].shape for o in outs], [(1, 100), (1, 30)])
self.assertEqual([o["is_last"] for o in outs], [False, True])
outs = list(chunk_iter(inputs, feature_extractor, 80, 20, 10, ratio))
self.assertEqual(len(outs), 2)
self.assertEqual([o["stride"] for o in outs], [(80, 0, 10), (50, 20, 0)])
self.assertEqual([o["input_values"].shape for o in outs], [(1, 80), (1, 50)])
self.assertEqual([o["is_last"] for o in outs], [False, True])
outs = list(chunk_iter(inputs, feature_extractor, 90, 20, 0, ratio))
self.assertEqual(len(outs), 2)
self.assertEqual([o["stride"] for o in outs], [(90, 0, 0), (30, 20, 0)])
self.assertEqual([o["input_values"].shape for o in outs], [(1, 90), (1, 30)])
inputs = torch.LongTensor([i % 2 for i in range(100)])
input_values = feature_extractor(inputs, sampling_rate=feature_extractor.sampling_rate, return_tensors="pt")[
"input_values"
]
outs = list(chunk_iter(inputs, feature_extractor, 30, 5, 5, ratio))
self.assertEqual(len(outs), 5)
self.assertEqual([o["stride"] for o in outs], [(30, 0, 5), (30, 5, 5), (30, 5, 5), (30, 5, 5), (20, 5, 0)])
self.assertEqual([o["input_values"].shape for o in outs], [(1, 30), (1, 30), (1, 30), (1, 30), (1, 20)])
self.assertEqual([o["is_last"] for o in outs], [False, False, False, False, True])
# (0, 25)
self.assertEqual(nested_simplify(input_values[:, :30]), nested_simplify(outs[0]["input_values"]))
# (25, 45)
self.assertEqual(nested_simplify(input_values[:, 20:50]), nested_simplify(outs[1]["input_values"]))
# (45, 65)
self.assertEqual(nested_simplify(input_values[:, 40:70]), nested_simplify(outs[2]["input_values"]))
# (65, 85)
self.assertEqual(nested_simplify(input_values[:, 60:90]), nested_simplify(outs[3]["input_values"]))
# (85, 100)
self.assertEqual(nested_simplify(input_values[:, 80:100]), nested_simplify(outs[4]["input_values"]))
@require_torch
def test_stride(self):
speech_recognizer = pipeline(
task="automatic-speech-recognition",
model="hf-internal-testing/tiny-random-wav2vec2",
)
waveform = np.tile(np.arange(1000, dtype=np.float32), 10)
output = speech_recognizer({"raw": waveform, "stride": (0, 0), "sampling_rate": 16_000})
self.assertEqual(output, {"text": "OB XB B EB BB B EB B OB X"})
# 0 effective ids Just take the middle one
output = speech_recognizer({"raw": waveform, "stride": (5000, 5000), "sampling_rate": 16_000})
self.assertEqual(output, {"text": ""})
# Only 1 arange.
output = speech_recognizer({"raw": waveform, "stride": (0, 9000), "sampling_rate": 16_000})
self.assertEqual(output, {"text": "OB"})
# 2nd arange
output = speech_recognizer({"raw": waveform, "stride": (1000, 8000), "sampling_rate": 16_000})
self.assertEqual(output, {"text": "XB"})
def require_ffmpeg(test_case):
"""
Decorator marking a test that requires FFmpeg.
These tests are skipped when FFmpeg isn't installed.
"""
import subprocess
try:
subprocess.check_output(["ffmpeg", "-h"], stderr=subprocess.DEVNULL)
return test_case
except Exception:
return unittest.skip("test requires ffmpeg")(test_case)
def bytes_iter(chunk_size, chunks):
for i in range(chunks):
yield bytes(range(i * chunk_size, (i + 1) * chunk_size))
@require_ffmpeg
class AudioUtilsTest(unittest.TestCase):
def test_chunk_bytes_iter_too_big(self):
iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=2), 10, stride=(0, 0)))
self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02\x03\x04\x05", "stride": (0, 0)})
with self.assertRaises(StopIteration):
next(iter_)
def test_chunk_bytes_iter(self):
iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=2), 3, stride=(0, 0)))
self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 0)})
self.assertEqual(next(iter_), {"raw": b"\x03\x04\x05", "stride": (0, 0)})
with self.assertRaises(StopIteration):
next(iter_)
def test_chunk_bytes_iter_stride(self):
iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=2), 3, stride=(1, 1)))
self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 1)})
self.assertEqual(next(iter_), {"raw": b"\x01\x02\x03", "stride": (1, 1)})
self.assertEqual(next(iter_), {"raw": b"\x02\x03\x04", "stride": (1, 1)})
# This is finished, but the chunk_bytes doesn't know it yet.
self.assertEqual(next(iter_), {"raw": b"\x03\x04\x05", "stride": (1, 1)})
self.assertEqual(next(iter_), {"raw": b"\x04\x05", "stride": (1, 0)})
with self.assertRaises(StopIteration):
next(iter_)
def test_chunk_bytes_iter_stride_stream(self):
iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=2), 5, stride=(1, 1), stream=True))
self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 0), "partial": True})
self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02\x03\x04", "stride": (0, 1), "partial": False})
self.assertEqual(next(iter_), {"raw": b"\x03\x04\x05", "stride": (1, 0), "partial": False})
with self.assertRaises(StopIteration):
next(iter_)
iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=3), 5, stride=(1, 1), stream=True))
self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 0), "partial": True})
self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02\x03\x04", "stride": (0, 1), "partial": False})
self.assertEqual(next(iter_), {"raw": b"\x03\x04\x05\x06\x07", "stride": (1, 1), "partial": False})
self.assertEqual(next(iter_), {"raw": b"\x06\x07\x08", "stride": (1, 0), "partial": False})
with self.assertRaises(StopIteration):
next(iter_)
iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=3), 10, stride=(1, 1), stream=True))
self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 0), "partial": True})
self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02\x03\x04\x05", "stride": (0, 0), "partial": True})
self.assertEqual(
next(iter_), {"raw": b"\x00\x01\x02\x03\x04\x05\x06\x07\x08", "stride": (0, 0), "partial": True}
)
self.assertEqual(
next(iter_), {"raw": b"\x00\x01\x02\x03\x04\x05\x06\x07\x08", "stride": (0, 0), "partial": False}
)
with self.assertRaises(StopIteration):
next(iter_)