mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-06 14:20:04 +06:00

* add draft logit processor * add template functions * update timesapmt processor parameters * draft script * simplify code * cleanup * fixup and clean * update pipeline * style * clean up previous idea * add tokenization utils * update tokenizer and asr output * fit whisper type * style and update test * clean test * style test * update tests * update error test * udpate code (not based on review yet) * update tokenization * update asr pipeline * update code * cleanup and update test * fmt * remove text verificatino * cleanup * cleanup * add model test * update tests * update code add docstring * update code and add docstring * fix pipeline tests * add draft logit processor add template functions update timesapmt processor parameters draft script simplify code cleanup fixup and clean update pipeline style clean up previous idea add tokenization utils update tokenizer and asr output fit whisper type style and update test clean test style test update tests update error test udpate code (not based on review yet) update tokenization update asr pipeline update code cleanup and update test fmt remove text verificatino cleanup cleanup add model test update tests update code add docstring update code and add docstring fix pipeline tests * Small update. * Fixup. * Tmp. * More support. * Making `forced_decoder_ids` non mandatory for users to set. * update and fix first bug * properly process sequence right after merge if last * tofo * allow list inputs + compute begin index better * start adding tests * add the 3 edge cases * style * format sequences * fixup * update * update * style * test passes, edge cases should be good * update last value * remove Trie * update tests and expec ted values * handle bigger chunk_length * clean tests a bit * refactor chunk iter and clean pipeline * update tests * style * refactor chunk iter and clean pipeline * upade * resolve comments * Apply suggestions from code review Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com> * take stride right into account * update test expected values * Update code based on review Co-authored-by: sgugger <sylvain.gugger@gmail.com> * major refactor * add correct strides for tests * Update src/transformers/pipelines/automatic_speech_recognition.py * fix whisper timestamp test Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com> Co-authored-by: sgugger <sylvain.gugger@gmail.com>
1139 lines
48 KiB
Python
1139 lines
48 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Testing suite for the PyTorch Whisper model. """
|
|
|
|
import copy
|
|
import inspect
|
|
import os
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from transformers import WhisperConfig
|
|
from transformers.testing_utils import is_torch_available, require_torch, require_torchaudio, slow, torch_device
|
|
from transformers.utils import cached_property
|
|
from transformers.utils.import_utils import is_datasets_available
|
|
|
|
from ...generation.test_utils import GenerationTesterMixin
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
|
|
|
|
|
|
if is_datasets_available():
|
|
import datasets
|
|
from datasets import load_dataset
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
WhisperFeatureExtractor,
|
|
WhisperForConditionalGeneration,
|
|
WhisperModel,
|
|
WhisperProcessor,
|
|
set_seed,
|
|
)
|
|
from transformers.generation.logits_process import WhisperTimeStampLogitsProcessor
|
|
from transformers.models.whisper.modeling_whisper import WhisperDecoder, WhisperEncoder
|
|
|
|
|
|
def prepare_whisper_inputs_dict(
|
|
config,
|
|
input_features,
|
|
decoder_input_ids,
|
|
attention_mask=None,
|
|
decoder_attention_mask=None,
|
|
head_mask=None,
|
|
decoder_head_mask=None,
|
|
cross_attn_head_mask=None,
|
|
):
|
|
if decoder_attention_mask is None:
|
|
decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id)
|
|
if head_mask is None:
|
|
head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device)
|
|
if decoder_head_mask is None:
|
|
decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
|
|
if cross_attn_head_mask is None:
|
|
cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
|
|
return {
|
|
# "input_ids": input_features,
|
|
"input_features": input_features,
|
|
"decoder_input_ids": decoder_input_ids,
|
|
"decoder_attention_mask": decoder_attention_mask,
|
|
"head_mask": head_mask,
|
|
"decoder_head_mask": decoder_head_mask,
|
|
"cross_attn_head_mask": cross_attn_head_mask,
|
|
}
|
|
|
|
|
|
@require_torch
|
|
class WhisperModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=60,
|
|
is_training=True,
|
|
use_labels=False,
|
|
vocab_size=99,
|
|
hidden_size=16,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
input_channels=1,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=20,
|
|
max_source_positions=30,
|
|
max_target_positions=40,
|
|
bos_token_id=98,
|
|
eos_token_id=98,
|
|
pad_token_id=0,
|
|
num_mel_bins=80,
|
|
decoder_start_token_id=85,
|
|
num_conv_layers=1,
|
|
suppress_tokens=None,
|
|
begin_suppress_tokens=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.input_channels = input_channels
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.num_mel_bins = num_mel_bins
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.max_source_positions = max_source_positions
|
|
self.max_target_positions = max_target_positions
|
|
self.eos_token_id = eos_token_id
|
|
self.pad_token_id = pad_token_id
|
|
self.bos_token_id = bos_token_id
|
|
self.decoder_start_token_id = decoder_start_token_id
|
|
self.num_conv_layers = num_conv_layers
|
|
self.suppress_tokens = suppress_tokens
|
|
self.begin_suppress_tokens = begin_suppress_tokens
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_features = floats_tensor([self.batch_size, self.num_mel_bins, self.seq_length], self.vocab_size)
|
|
|
|
decoder_input_ids = torch.tensor(self.batch_size * [[self.decoder_start_token_id]], device=torch_device)
|
|
|
|
config = self.get_config()
|
|
inputs_dict = prepare_whisper_inputs_dict(
|
|
config,
|
|
attention_mask=None,
|
|
input_features=input_features,
|
|
decoder_input_ids=decoder_input_ids,
|
|
)
|
|
return config, inputs_dict
|
|
|
|
def get_config(self):
|
|
return WhisperConfig(
|
|
vocab_size=self.vocab_size,
|
|
d_model=self.hidden_size,
|
|
encoder_layers=self.num_hidden_layers,
|
|
decoder_layers=self.num_hidden_layers,
|
|
encoder_attention_heads=self.num_attention_heads,
|
|
decoder_attention_heads=self.num_attention_heads,
|
|
input_channels=self.input_channels,
|
|
dropout=self.hidden_dropout_prob,
|
|
attention_dropout=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
max_source_positions=self.max_source_positions,
|
|
max_target_positions=self.max_target_positions,
|
|
eos_token_id=self.eos_token_id,
|
|
bos_token_id=self.bos_token_id,
|
|
pad_token_id=self.pad_token_id,
|
|
decoder_ffn_dim=self.hidden_size,
|
|
encoder_ffn_dim=self.hidden_size,
|
|
decoder_start_token_id=self.decoder_start_token_id,
|
|
suppress_tokens=self.suppress_tokens,
|
|
begin_suppress_tokens=self.begin_suppress_tokens,
|
|
)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config, inputs_dict = self.prepare_config_and_inputs()
|
|
return config, inputs_dict
|
|
|
|
def get_subsampled_output_lengths(self, input_lengths):
|
|
"""
|
|
Computes the output length of the convolutional layers
|
|
"""
|
|
|
|
for i in range(self.num_conv_layers):
|
|
input_lengths = (input_lengths - 1) // 2 + 1
|
|
|
|
return input_lengths
|
|
|
|
def create_and_check_model_forward(self, config, inputs_dict, freeze_encoder=False):
|
|
model = WhisperModel(config=config).to(torch_device).eval()
|
|
|
|
if freeze_encoder:
|
|
model.freeze_encoder()
|
|
|
|
input_features = inputs_dict["input_features"]
|
|
decoder_input_ids = inputs_dict["decoder_input_ids"]
|
|
|
|
# first forward pass
|
|
last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state
|
|
|
|
self.parent.assertTrue(last_hidden_state.shape, (13, 7, 16))
|
|
|
|
def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
|
|
model = WhisperModel(config=config).get_decoder().to(torch_device).eval()
|
|
input_ids = inputs_dict["decoder_input_ids"]
|
|
attention_mask = inputs_dict["decoder_attention_mask"]
|
|
|
|
# first forward pass
|
|
outputs = model(input_ids, attention_mask=attention_mask, use_cache=True)
|
|
|
|
output, past_key_values = outputs.to_tuple()
|
|
|
|
# create hypothetical multiple next token and extent to next_input_ids
|
|
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size).clamp(2)
|
|
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
|
|
|
|
# append to next input_ids and
|
|
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
|
next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)
|
|
|
|
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
|
|
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
|
|
"last_hidden_state"
|
|
]
|
|
|
|
# select random slice
|
|
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
|
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
|
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
|
|
|
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
|
|
|
# test that outputs are equal for slice
|
|
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2))
|
|
|
|
def check_encoder_decoder_model_standalone(self, config, inputs_dict):
|
|
model = WhisperModel(config=config).to(torch_device).eval()
|
|
outputs = model(**inputs_dict)
|
|
|
|
encoder_last_hidden_state = outputs.encoder_last_hidden_state
|
|
last_hidden_state = outputs.last_hidden_state
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
encoder = model.get_encoder()
|
|
encoder.save_pretrained(tmpdirname)
|
|
encoder = WhisperEncoder.from_pretrained(tmpdirname).to(torch_device)
|
|
|
|
encoder_last_hidden_state_2 = encoder(inputs_dict["input_features"])[0]
|
|
|
|
self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
decoder = model.get_decoder()
|
|
decoder.save_pretrained(tmpdirname)
|
|
decoder = WhisperDecoder.from_pretrained(tmpdirname).to(torch_device)
|
|
|
|
last_hidden_state_2 = decoder(
|
|
input_ids=inputs_dict["decoder_input_ids"],
|
|
attention_mask=inputs_dict["decoder_attention_mask"],
|
|
encoder_hidden_states=encoder_last_hidden_state,
|
|
)[0]
|
|
|
|
self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3)
|
|
|
|
|
|
@require_torch
|
|
class WhisperModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
|
|
all_model_classes = (WhisperModel, WhisperForConditionalGeneration) if is_torch_available() else ()
|
|
all_generative_model_classes = (WhisperForConditionalGeneration,) if is_torch_available() else ()
|
|
is_encoder_decoder = True
|
|
fx_compatible = False
|
|
test_pruning = False
|
|
test_missing_keys = False
|
|
|
|
input_name = "input_features"
|
|
|
|
def setUp(self):
|
|
self.model_tester = WhisperModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=WhisperConfig)
|
|
self.maxDiff = 3000
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_save_load_strict(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
|
|
self.assertEqual(info["missing_keys"], [])
|
|
|
|
def test_model_forward(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model_forward(*config_and_inputs)
|
|
|
|
def test_model_forward_with_frozen_encoder(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model_forward(*config_and_inputs, freeze_encoder=True)
|
|
|
|
def test_requires_grad_with_frozen_encoder(self):
|
|
config = self.model_tester.get_config()
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.freeze_encoder()
|
|
|
|
try:
|
|
encoder_grads = [param.requires_grad for param in model.encoder.parameters()]
|
|
decoder_grads = [param.requires_grad for param in model.decoder.parameters()]
|
|
except AttributeError:
|
|
encoder_grads = [param.requires_grad for param in model.model.encoder.parameters()]
|
|
decoder_grads = [param.requires_grad for param in model.model.decoder.parameters()]
|
|
|
|
self.assertFalse(all(encoder_grads))
|
|
self.assertTrue(all(decoder_grads))
|
|
|
|
def test_decoder_model_past_with_large_inputs(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
|
|
|
|
def test_encoder_decoder_model_standalone(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
|
|
self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs)
|
|
|
|
def _get_input_ids_and_config(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
input_ids = inputs_dict[self.input_name]
|
|
|
|
# cut to half length & take max batch_size 3
|
|
max_batch_size = 3
|
|
input_ids = input_ids[:max_batch_size, :, :]
|
|
|
|
# generate max 3 tokens
|
|
max_length = input_ids.shape[-1] + 3
|
|
if config.eos_token_id is not None and config.pad_token_id is None:
|
|
# hack to allow generate for models such as GPT2 as is done in `generate()`
|
|
config.pad_token_id = config.eos_token_id
|
|
|
|
return config, input_ids, None, max_length
|
|
|
|
# not implemented currently
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
# training is not supported yet
|
|
def test_training(self):
|
|
pass
|
|
|
|
def test_training_gradient_checkpointing(self):
|
|
pass
|
|
|
|
def test_generate_with_head_masking(self):
|
|
pass
|
|
|
|
def test_generate_fp16(self):
|
|
config, input_dict = self.model_tester.prepare_config_and_inputs()
|
|
config.max_target_positions = 400
|
|
input_features = input_dict["input_features"]
|
|
model = WhisperForConditionalGeneration(config).eval().to(torch_device)
|
|
if torch_device == "cuda":
|
|
input_features = input_features.half()
|
|
model.half()
|
|
model.generate(input_features)
|
|
model.generate(input_features, num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)
|
|
|
|
def test_forward_signature(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
signature = inspect.signature(model.forward)
|
|
# signature.parameters is an OrderedDict => so arg_names order is deterministic
|
|
arg_names = [*signature.parameters.keys()]
|
|
|
|
expected_arg_names = [
|
|
"input_features",
|
|
"decoder_input_ids",
|
|
"decoder_attention_mask",
|
|
]
|
|
expected_arg_names.extend(
|
|
["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
|
|
if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
|
|
else ["encoder_outputs"]
|
|
)
|
|
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
|
|
|
|
def test_hidden_states_output(self):
|
|
def check_hidden_states_output(inputs_dict, config, model_class):
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
|
|
|
|
expected_num_layers = getattr(
|
|
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
|
|
)
|
|
self.assertEqual(len(hidden_states), expected_num_layers)
|
|
|
|
if hasattr(self.model_tester, "encoder_seq_length"):
|
|
seq_length = self.model_tester.encoder_seq_length
|
|
else:
|
|
seq_length = self.model_tester.seq_length
|
|
|
|
subsampled_seq_length = model._get_feat_extract_output_lengths(seq_length)
|
|
|
|
self.assertListEqual(
|
|
list(hidden_states[0].shape[-2:]),
|
|
[subsampled_seq_length, self.model_tester.hidden_size],
|
|
)
|
|
|
|
if config.is_encoder_decoder:
|
|
hidden_states = outputs.decoder_hidden_states
|
|
|
|
self.assertIsInstance(hidden_states, (list, tuple))
|
|
self.assertEqual(len(hidden_states), expected_num_layers)
|
|
|
|
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", 1)
|
|
|
|
self.assertListEqual(
|
|
list(hidden_states[0].shape[-2:]),
|
|
[decoder_seq_length, self.model_tester.hidden_size],
|
|
)
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
inputs_dict["output_hidden_states"] = True
|
|
check_hidden_states_output(inputs_dict, config, model_class)
|
|
|
|
# check that output_hidden_states also work using config
|
|
del inputs_dict["output_hidden_states"]
|
|
config.output_hidden_states = True
|
|
|
|
check_hidden_states_output(inputs_dict, config, model_class)
|
|
|
|
def test_attention_outputs(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.return_dict = True
|
|
|
|
seq_len = getattr(self.model_tester, "seq_length", None)
|
|
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", 1)
|
|
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
|
|
decoder_key_length = getattr(self.model_tester, "decoder_key_length", 1)
|
|
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
|
|
|
|
for model_class in self.all_model_classes:
|
|
inputs_dict["output_attentions"] = True
|
|
inputs_dict["output_hidden_states"] = False
|
|
config.return_dict = True
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
subsampled_encoder_seq_length = model._get_feat_extract_output_lengths(encoder_seq_length)
|
|
subsampled_encoder_key_length = model._get_feat_extract_output_lengths(encoder_key_length)
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
|
|
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
|
|
|
|
# check that output_attentions also work using config
|
|
del inputs_dict["output_attentions"]
|
|
config.output_attentions = True
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
|
|
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
|
|
|
|
self.assertListEqual(
|
|
list(attentions[0].shape[-3:]),
|
|
[self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length],
|
|
)
|
|
out_len = len(outputs)
|
|
|
|
correct_outlen = 5
|
|
|
|
# loss is at first position
|
|
if "labels" in inputs_dict:
|
|
correct_outlen += 1 # loss is added to beginning
|
|
if "past_key_values" in outputs:
|
|
correct_outlen += 1 # past_key_values have been returned
|
|
|
|
self.assertEqual(out_len, correct_outlen)
|
|
|
|
# decoder attentions
|
|
decoder_attentions = outputs.decoder_attentions
|
|
self.assertIsInstance(decoder_attentions, (list, tuple))
|
|
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
|
|
self.assertListEqual(
|
|
list(decoder_attentions[0].shape[-3:]),
|
|
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
|
|
)
|
|
|
|
# cross attentions
|
|
cross_attentions = outputs.cross_attentions
|
|
self.assertIsInstance(cross_attentions, (list, tuple))
|
|
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
|
|
self.assertListEqual(
|
|
list(cross_attentions[0].shape[-3:]),
|
|
[
|
|
self.model_tester.num_attention_heads,
|
|
decoder_seq_length,
|
|
subsampled_encoder_key_length,
|
|
],
|
|
)
|
|
|
|
# Check attention is always last and order is fine
|
|
inputs_dict["output_attentions"] = True
|
|
inputs_dict["output_hidden_states"] = True
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
added_hidden_states = 2
|
|
self.assertEqual(out_len + added_hidden_states, len(outputs))
|
|
|
|
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
|
|
|
|
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
|
|
self.assertListEqual(
|
|
list(self_attentions[0].shape[-3:]),
|
|
[self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length],
|
|
)
|
|
|
|
def test_resize_tokens_embeddings(self):
|
|
(
|
|
original_config,
|
|
inputs_dict,
|
|
) = self.model_tester.prepare_config_and_inputs_for_common()
|
|
if not self.test_resize_embeddings:
|
|
return
|
|
|
|
for model_class in self.all_model_classes:
|
|
config = copy.deepcopy(original_config)
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
|
|
if self.model_tester.is_training is False:
|
|
model.eval()
|
|
|
|
model_vocab_size = config.vocab_size
|
|
# Retrieve the embeddings and clone theme
|
|
model_embed = model.resize_token_embeddings(model_vocab_size)
|
|
cloned_embeddings = model_embed.weight.clone()
|
|
|
|
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
|
|
model_embed = model.resize_token_embeddings(model_vocab_size + 10)
|
|
self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
|
|
# Check that it actually resizes the embeddings matrix
|
|
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
|
|
# Check that the model can still do a forward pass successfully (every parameter should be resized)
|
|
model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
|
|
model_embed = model.resize_token_embeddings(model_vocab_size - 15)
|
|
self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
|
|
# Check that it actually resizes the embeddings matrix
|
|
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)
|
|
|
|
# make sure that decoder_input_ids are resized
|
|
if "decoder_input_ids" in inputs_dict:
|
|
inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
|
|
model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
# Check that adding and removing tokens has not modified the first part of the embedding matrix.
|
|
models_equal = True
|
|
for p1, p2 in zip(cloned_embeddings, model_embed.weight):
|
|
if p1.data.ne(p2.data).sum() > 0:
|
|
models_equal = False
|
|
|
|
self.assertTrue(models_equal)
|
|
|
|
def test_resize_embeddings_untied(self):
|
|
(
|
|
original_config,
|
|
inputs_dict,
|
|
) = self.model_tester.prepare_config_and_inputs_for_common()
|
|
if not self.test_resize_embeddings:
|
|
return
|
|
|
|
original_config.tie_word_embeddings = False
|
|
|
|
# if model cannot untied embeddings -> leave test
|
|
if original_config.tie_word_embeddings:
|
|
return
|
|
|
|
for model_class in self.all_model_classes:
|
|
config = copy.deepcopy(original_config)
|
|
model = model_class(config).to(torch_device)
|
|
|
|
# if no output embeddings -> leave test
|
|
if model.get_output_embeddings() is None:
|
|
continue
|
|
|
|
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
|
|
model_vocab_size = config.vocab_size
|
|
model.resize_token_embeddings(model_vocab_size + 10)
|
|
self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
|
|
output_embeds = model.get_output_embeddings()
|
|
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
|
|
# Check bias if present
|
|
if output_embeds.bias is not None:
|
|
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
|
|
# Check that the model can still do a forward pass successfully (every parameter should be resized)
|
|
model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
|
|
model.resize_token_embeddings(model_vocab_size - 15)
|
|
self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
|
|
# Check that it actually resizes the embeddings matrix
|
|
output_embeds = model.get_output_embeddings()
|
|
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
|
|
# Check bias if present
|
|
if output_embeds.bias is not None:
|
|
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
|
|
# Check that the model can still do a forward pass successfully (every parameter should be resized)
|
|
if "decoder_input_ids" in inputs_dict:
|
|
inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
|
|
# Check that the model can still do a forward pass successfully (every parameter should be resized)
|
|
model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
def test_generate_without_input_ids(self):
|
|
pass
|
|
|
|
@staticmethod
|
|
def _get_encoder_outputs(
|
|
model, input_ids, attention_mask, output_attentions=None, output_hidden_states=None, num_interleave=1
|
|
):
|
|
encoder = model.get_encoder()
|
|
encoder_outputs = encoder(
|
|
input_ids,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
)
|
|
encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.repeat_interleave(
|
|
num_interleave, dim=0
|
|
)
|
|
input_ids = input_ids[:, :, 0]
|
|
input_ids = torch.zeros_like(input_ids[:, :1], dtype=torch.long) + torch.tensor(
|
|
[model._get_decoder_start_token_id()], device=input_ids.device
|
|
)
|
|
attention_mask = None
|
|
return encoder_outputs, input_ids, attention_mask
|
|
|
|
def _check_outputs(self, output, input_ids, config, use_cache=False, num_return_sequences=1):
|
|
batch_size, mel, seq_length = input_ids.shape
|
|
subsampled_seq_length = self.model_tester.get_subsampled_output_lengths(seq_length)
|
|
num_sequences_in_output = batch_size * num_return_sequences
|
|
gen_len = (
|
|
output.sequences.shape[-1] - 1 if config.is_encoder_decoder else output.sequences.shape[-1] - seq_length
|
|
)
|
|
|
|
# scores
|
|
self._check_scores(num_sequences_in_output, output.scores, length=gen_len, config=config)
|
|
|
|
# Attentions
|
|
# encoder
|
|
self._check_encoder_attention_for_generate(
|
|
output.encoder_attentions, batch_size, config, subsampled_seq_length
|
|
)
|
|
# decoder
|
|
self._check_attentions_for_generate(
|
|
num_sequences_in_output,
|
|
output.decoder_attentions,
|
|
min_length=1,
|
|
max_length=output.sequences.shape[-1],
|
|
config=config,
|
|
use_cache=use_cache,
|
|
)
|
|
|
|
# Hidden States
|
|
# encoder
|
|
self._check_encoder_hidden_states_for_generate(
|
|
output.encoder_hidden_states, batch_size, config, subsampled_seq_length
|
|
)
|
|
|
|
# decoder
|
|
self._check_hidden_states_for_generate(
|
|
num_sequences_in_output,
|
|
output.decoder_hidden_states,
|
|
min_length=1,
|
|
max_length=output.sequences.shape[-1],
|
|
config=config,
|
|
use_cache=use_cache,
|
|
)
|
|
|
|
def _create_and_check_torchscript(self, config, inputs_dict):
|
|
if not self.test_torchscript:
|
|
return
|
|
|
|
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
|
|
configs_no_init.torchscript = True
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=configs_no_init)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
|
|
try:
|
|
model.config.use_cache = False # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
|
|
input_features = inputs["input_features"]
|
|
decoder_input_ids = inputs["decoder_input_ids"]
|
|
decoder_attention_mask = inputs["decoder_attention_mask"]
|
|
traced_model = torch.jit.trace(model, (input_features, decoder_input_ids, decoder_attention_mask))
|
|
except RuntimeError:
|
|
self.fail("Couldn't trace module.")
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name:
|
|
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
|
|
|
|
try:
|
|
torch.jit.save(traced_model, pt_file_name)
|
|
except Exception:
|
|
self.fail("Couldn't save module.")
|
|
|
|
try:
|
|
loaded_model = torch.jit.load(pt_file_name)
|
|
except Exception:
|
|
self.fail("Couldn't load module.")
|
|
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
loaded_model.to(torch_device)
|
|
loaded_model.eval()
|
|
|
|
model_state_dict = model.state_dict()
|
|
loaded_model_state_dict = loaded_model.state_dict()
|
|
|
|
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
|
|
|
|
models_equal = True
|
|
for layer_name, p1 in model_state_dict.items():
|
|
p2 = loaded_model_state_dict[layer_name]
|
|
if p1.data.ne(p2.data).sum() > 0:
|
|
models_equal = False
|
|
|
|
self.assertTrue(models_equal)
|
|
|
|
|
|
@require_torch
|
|
@require_torchaudio
|
|
class WhisperModelIntegrationTests(unittest.TestCase):
|
|
@cached_property
|
|
def default_processor(self):
|
|
return WhisperProcessor.from_pretrained("openai/whisper-base")
|
|
|
|
def _load_datasamples(self, num_samples):
|
|
|
|
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
|
# automatic decoding with librispeech
|
|
speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]
|
|
|
|
return [x["array"] for x in speech_samples]
|
|
|
|
@slow
|
|
def test_tiny_logits_librispeech(self):
|
|
torch_device = "cpu"
|
|
set_seed(0)
|
|
model = WhisperModel.from_pretrained("openai/whisper-tiny")
|
|
model.to(torch_device)
|
|
input_speech = self._load_datasamples(1)
|
|
feature_extractor = WhisperFeatureExtractor()
|
|
input_features = feature_extractor(input_speech, return_tensors="pt").input_features
|
|
|
|
with torch.no_grad():
|
|
logits = model(
|
|
input_features,
|
|
decoder_input_ids=torch.tensor([[50258, 50259, 50359]]),
|
|
output_hidden_states=False,
|
|
output_attentions=False,
|
|
return_dict=False,
|
|
use_cache=False,
|
|
)
|
|
|
|
# fmt: off
|
|
EXPECTED_LOGITS = torch.tensor(
|
|
[
|
|
2.9892, -6.7607, 5.7348, 3.6096, 0.2152, -5.7321, 4.8855, -1.6407,
|
|
0.2823, -1.5718, 10.4269, 3.4427, 0.0219, -8.0612, 3.4784, 8.4246,
|
|
4.0575, -2.2864, 11.1084, 0.9963, 0.9884, -8.5154, -3.5469, -9.3713,
|
|
0.9786, 3.5435, 7.4850, -5.2579, -1.4366, 10.4841
|
|
]
|
|
)
|
|
# fmt: on
|
|
self.assertTrue(torch.allclose(logits[0][0, 0, :30].cpu(), EXPECTED_LOGITS, atol=1e-4))
|
|
|
|
# fmt: off
|
|
EXPECTED_GENERATION = torch.tensor(
|
|
[
|
|
-1.4651, -2.6944, 2.7821, 2.3793, 4.0738, 0.0188, -3.3203, 1.9836,
|
|
0.0520, 0.7095, 1.1063, 0.2952, -3.6786, -0.5249, 0.3105, 4.7691,
|
|
1.1562, 1.3046, 0.5810, -0.3624, 1.7006, 1.3424, 0.9817, 2.1958,
|
|
1.8775, -5.7046, -0.7679, 4.0113, 2.6848, 2.8609
|
|
]
|
|
)
|
|
# fmt: on
|
|
|
|
head_logits = logits[0] @ model.decoder.embed_tokens.weight.T
|
|
self.assertTrue(torch.allclose(head_logits[0, 0, :30].cpu(), EXPECTED_GENERATION, atol=1e-4))
|
|
|
|
@slow
|
|
def test_small_en_logits_librispeech(self):
|
|
set_seed(0)
|
|
torch_device = "cpu"
|
|
model = WhisperModel.from_pretrained("openai/whisper-small.en")
|
|
model.to(torch_device)
|
|
|
|
input_speech = self._load_datasamples(1)
|
|
|
|
feaure_extractor = WhisperFeatureExtractor()
|
|
input_features = feaure_extractor(input_speech, return_tensors="pt").input_features.to(torch_device)
|
|
|
|
logits = model(
|
|
input_features,
|
|
decoder_input_ids=torch.tensor([[model.config.decoder_start_token_id]]),
|
|
output_hidden_states=False,
|
|
output_attentions=False,
|
|
use_cache=False,
|
|
)
|
|
|
|
logits = logits.last_hidden_state @ model.decoder.embed_tokens.weight.T
|
|
|
|
# fmt: off
|
|
EXPECTED_LOGITS = torch.tensor(
|
|
[
|
|
-3.6784, -7.7211, -9.5070, -11.9286, -7.6489, -9.7026, -5.6188,
|
|
-8.0104, -4.6238, -5.1833, -9.0485, -3.4079, -5.4874, -2.6935,
|
|
-6.3479, -7.3398, -6.9558, -7.6867, -7.4748, -8.3463, -9.9781,
|
|
-10.8389, -10.3105, -11.7201, -9.7261, -7.1590, -5.9272, -12.4509,
|
|
-11.1146, -8.1918
|
|
]
|
|
)
|
|
# fmt: on
|
|
self.assertTrue(torch.allclose(logits[0, 0, :30].cpu(), EXPECTED_LOGITS, atol=1e-4))
|
|
|
|
@slow
|
|
def test_large_logits_librispeech(self):
|
|
set_seed(0)
|
|
|
|
torch_device = "cpu"
|
|
model = WhisperModel.from_pretrained("openai/whisper-large")
|
|
model.to(torch_device)
|
|
|
|
input_speech = self._load_datasamples(1)
|
|
|
|
processor = WhisperProcessor.from_pretrained("openai/whisper-large")
|
|
processed_inputs = processor(
|
|
audio=input_speech, text="This part of the speech", add_special_tokens=False, return_tensors="pt"
|
|
)
|
|
input_features = processed_inputs.input_features.to(torch_device)
|
|
decoder_input_ids = processed_inputs.labels.to(torch_device)
|
|
|
|
logits = model(
|
|
input_features,
|
|
decoder_input_ids=decoder_input_ids,
|
|
output_hidden_states=False,
|
|
output_attentions=False,
|
|
use_cache=False,
|
|
)
|
|
|
|
logits = logits.last_hidden_state @ model.decoder.embed_tokens.weight.T
|
|
|
|
# fmt: off
|
|
EXPECTED_LOGITS = torch.tensor(
|
|
[
|
|
2.1382, 0.9381, 4.4671, 3.5589, 2.4022, 3.8576, -0.6521, 2.5472,
|
|
1.8301, 1.9957, 2.3432, 1.4678, 0.5459, 2.2597, 1.5179, 2.5357,
|
|
1.1624, 0.6194, 1.0757, 1.8259, 2.4076, 1.6601, 2.3503, 1.3376,
|
|
1.9891, 1.8635, 3.8931, 5.3699, 4.4772, 3.9184
|
|
]
|
|
)
|
|
# fmt: on
|
|
|
|
self.assertTrue(torch.allclose(logits[0, 0, :30].cpu(), EXPECTED_LOGITS, atol=1e-4))
|
|
|
|
@slow
|
|
def test_tiny_en_generation(self):
|
|
|
|
torch_device = "cpu"
|
|
set_seed(0)
|
|
processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
|
|
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
|
|
model.to(torch_device)
|
|
model.config.decoder_start_token_id = 50257
|
|
|
|
input_speech = self._load_datasamples(1)
|
|
input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="pt").input_features.to(
|
|
torch_device
|
|
)
|
|
|
|
generated_ids = model.generate(input_features, num_beams=5, max_length=20)
|
|
transcript = processor.tokenizer.batch_decode(generated_ids)[0]
|
|
|
|
EXPECTED_TRANSCRIPT = (
|
|
"<|startoftranscript|><|notimestamps|> Mr. Quilter is the apostle of the middle"
|
|
" classes, and we are glad to"
|
|
)
|
|
self.assertEqual(transcript, EXPECTED_TRANSCRIPT)
|
|
|
|
@slow
|
|
def test_tiny_generation(self):
|
|
|
|
torch_device = "cpu"
|
|
set_seed(0)
|
|
processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
|
|
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
|
|
model.to(torch_device)
|
|
|
|
input_speech = self._load_datasamples(1)
|
|
input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="pt").input_features.to(
|
|
torch_device
|
|
)
|
|
|
|
generated_ids = model.generate(input_features, num_beams=5, max_length=20)
|
|
transcript = processor.tokenizer.decode(generated_ids[0])
|
|
|
|
EXPECTED_TRANSCRIPT = (
|
|
"<|startoftranscript|><|en|><|transcribe|><|notimestamps|> Mr. Quilter is the apostle of the middle"
|
|
" classes and we are glad"
|
|
)
|
|
self.assertEqual(transcript, EXPECTED_TRANSCRIPT)
|
|
|
|
@slow
|
|
def test_large_generation(self):
|
|
torch_device = "cpu"
|
|
set_seed(0)
|
|
processor = WhisperProcessor.from_pretrained("openai/whisper-large")
|
|
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large")
|
|
model.to(torch_device)
|
|
|
|
input_speech = self._load_datasamples(1)
|
|
input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="pt").input_features.to(
|
|
torch_device
|
|
)
|
|
|
|
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="en", task="transcribe")
|
|
generated_ids = model.generate(
|
|
input_features,
|
|
do_sample=False,
|
|
max_length=20,
|
|
)
|
|
transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
|
|
|
EXPECTED_TRANSCRIPT = " Mr. Quilter is the apostle of the middle classes and we are glad"
|
|
self.assertEqual(transcript, EXPECTED_TRANSCRIPT)
|
|
|
|
@slow
|
|
def test_large_generation_multilingual(self):
|
|
torch_device = "cpu"
|
|
set_seed(0)
|
|
processor = WhisperProcessor.from_pretrained("openai/whisper-large")
|
|
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large")
|
|
model.to(torch_device)
|
|
|
|
ds = load_dataset("common_voice", "ja", split="test", streaming=True)
|
|
ds = ds.cast_column("audio", datasets.Audio(sampling_rate=16_000))
|
|
input_speech = next(iter(ds))["audio"]["array"]
|
|
input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="pt").input_features.to(
|
|
torch_device
|
|
)
|
|
|
|
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="ja", task="transcribe")
|
|
generated_ids = model.generate(input_features, do_sample=False, max_length=20)
|
|
transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
|
|
|
EXPECTED_TRANSCRIPT = "木村さんに電話を貸してもらいました"
|
|
self.assertEqual(transcript, EXPECTED_TRANSCRIPT)
|
|
|
|
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="en", task="transcribe")
|
|
generated_ids = model.generate(
|
|
input_features,
|
|
do_sample=False,
|
|
max_length=20,
|
|
)
|
|
transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
|
|
|
EXPECTED_TRANSCRIPT = " Kimura-san called me."
|
|
self.assertEqual(transcript, EXPECTED_TRANSCRIPT)
|
|
|
|
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="ja", task="translate")
|
|
generated_ids = model.generate(input_features, do_sample=False, max_length=20)
|
|
transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
|
|
|
EXPECTED_TRANSCRIPT = " I borrowed a phone from Kimura san"
|
|
self.assertEqual(transcript, EXPECTED_TRANSCRIPT)
|
|
|
|
@slow
|
|
def test_large_batched_generation(self):
|
|
set_seed(0)
|
|
processor = WhisperProcessor.from_pretrained("openai/whisper-large")
|
|
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large")
|
|
|
|
input_speech = self._load_datasamples(4)
|
|
input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="pt").input_features
|
|
generated_ids = model.generate(input_features, max_length=20)
|
|
|
|
# fmt: off
|
|
EXPECTED_LOGITS = torch.tensor(
|
|
[
|
|
[50258, 50358, 50363, 2221, 13, 2326, 388, 391, 307, 264, 50244, 295, 264, 2808, 5359, 293, 321, 366, 5404, 281],
|
|
[50258, 50358, 50363, 6966, 307, 2221, 13, 2326, 388, 391, 311, 9060, 1570, 1880, 813, 702, 1871, 13, 50257, 50257],
|
|
[50258, 50358, 50363, 634, 5112, 505, 300, 412, 341, 42729, 3196, 295, 264, 1064, 11, 365, 5272, 293, 12904, 9256],
|
|
[50258, 50358, 50363, 634, 575, 12525, 22618, 1968, 6144, 35617, 20084, 1756, 311, 589, 307, 534, 10281, 934, 439, 11]
|
|
]
|
|
)
|
|
# fmt: on
|
|
|
|
self.assertTrue(torch.allclose(generated_ids, EXPECTED_LOGITS))
|
|
|
|
# fmt: off
|
|
EXPECTED_TRANSCRIPT = [
|
|
" Mr. Quilter is the apostle of the middle classes and we are glad to",
|
|
" Nor is Mr. Quilter's manner less interesting than his matter.",
|
|
" He tells us that at this festive season of the year, with Christmas and roast beef",
|
|
" He has grave doubts whether Sir Frederick Layton's work is really Greek after all,",
|
|
]
|
|
# fmt: on
|
|
|
|
transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
|
self.assertListEqual(transcript, EXPECTED_TRANSCRIPT)
|
|
|
|
@slow
|
|
def test_tiny_en_batched_generation(self):
|
|
set_seed(0)
|
|
processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
|
|
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
|
|
model.to(torch_device)
|
|
|
|
input_speech = self._load_datasamples(4)
|
|
input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="pt").input_features.to(
|
|
torch_device
|
|
)
|
|
generated_ids = model.generate(input_features, max_length=20).to("cpu")
|
|
|
|
# fmt: off
|
|
EXPECTED_LOGITS = torch.tensor(
|
|
[
|
|
[50257, 50362, 1770, 13, 2264, 346, 353, 318, 262, 46329, 286, 262, 3504, 6097, 11, 290, 356, 389, 9675, 284],
|
|
[50257, 50362, 5414, 318, 1770, 13, 2264, 346, 353, 338, 5642, 1342, 3499, 621, 465, 2300, 13, 50256, 50256, 50256],
|
|
[50257, 50362, 679, 4952, 514, 326, 379, 428, 43856, 1622, 286, 262, 614, 11, 351, 6786, 290, 32595, 12023, 28236],
|
|
[50257, 50362, 679, 468, 12296, 17188, 1771, 7361, 26113, 18881, 1122, 338, 670, 318, 1107, 8312, 706, 477, 290, 460]
|
|
]
|
|
|
|
)
|
|
# fmt: on
|
|
|
|
self.assertTrue(torch.allclose(generated_ids, EXPECTED_LOGITS))
|
|
|
|
# fmt: off
|
|
EXPECTED_TRANSCRIPT = [
|
|
" Mr. Quilter is the apostle of the middle classes, and we are glad to",
|
|
" Nor is Mr. Quilter's manner less interesting than his matter.",
|
|
" He tells us that at this festive season of the year, with Christmas and roast beef looming",
|
|
" He has grave doubts whether Sir Frederick Layton's work is really Greek after all and can",
|
|
]
|
|
# fmt: on
|
|
|
|
transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
|
self.assertListEqual(transcript, EXPECTED_TRANSCRIPT)
|
|
|
|
@slow
|
|
def test_tiny_timestamp_generation(self):
|
|
set_seed(0)
|
|
processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
|
|
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
|
|
model.to(torch_device)
|
|
|
|
input_speech = np.concatenate(self._load_datasamples(4))
|
|
input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="pt").input_features.to(
|
|
torch_device
|
|
)
|
|
model.config.forced_decoder_ids = [(1, 50259), (2, 50359), (3, 50364)]
|
|
timestamp_processor = [WhisperTimeStampLogitsProcessor(len(model.config.forced_decoder_ids))]
|
|
generated_ids = model.generate(input_features, max_length=448, logits_processor=timestamp_processor).to("cpu")
|
|
|
|
# fmt: off
|
|
EXPECTED_OUTPUT = torch.tensor([50258, 50259, 50359, 50364, 2221, 13, 2326, 388, 391, 307, 264, 50244, 295, 264, 2808, 5359, 11, 293, 321, 366, 5404, 281, 2928, 702, 14943, 13, 50692, 50692, 6966, 307, 2221, 13, 2326, 388, 391, 311, 9060, 1570, 1880, 813, 702, 1871, 13, 50926, 50926, 634, 5112, 505, 300, 412, 341, 42729, 3196, 295, 264, 1064, 11, 365, 5272, 293, 12904, 9256, 450, 10539, 51208, 51208, 949, 505, 11, 14138, 10117, 490, 3936, 293, 1080, 3542, 5160, 881, 26336, 281, 264, 1575, 13, 51552, 51552, 634, 575, 12525, 22618, 1968, 6144, 35617, 7354, 1292, 6, 589, 307, 534, 10281, 934, 439, 11, 293, 51836, 51836, 50257])
|
|
# fmt: on
|
|
|
|
self.assertTrue(torch.allclose(generated_ids, EXPECTED_OUTPUT))
|
|
|
|
EXPECTED_TRANSCRIPT = [
|
|
{
|
|
"text": (
|
|
" Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel. Nor is"
|
|
" Mr. Quilter's manner less interesting than his matter. He tells us that at this festive season"
|
|
" of the year, with Christmas and roast beef looming before us, similarly drawn from eating and"
|
|
" its results occur most readily to the mind. He has grave doubts whether Sir Frederick Latins'"
|
|
" work is really Greek after all, and"
|
|
),
|
|
"offsets": [
|
|
{
|
|
"text": (
|
|
" Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."
|
|
),
|
|
"timestamp": (0.0, 6.5600000000000005),
|
|
},
|
|
{
|
|
"text": " Nor is Mr. Quilter's manner less interesting than his matter.",
|
|
"timestamp": (6.5600000000000005, 11.24),
|
|
},
|
|
{
|
|
"text": (
|
|
" He tells us that at this festive season of the year, with Christmas and roast beef"
|
|
" looming"
|
|
),
|
|
"timestamp": (11.24, 16.88),
|
|
},
|
|
{
|
|
"text": (
|
|
" before us, similarly drawn from eating and its results occur most readily to the mind."
|
|
),
|
|
"timestamp": (16.88, 23.76),
|
|
},
|
|
{
|
|
"text": (
|
|
" He has grave doubts whether Sir Frederick Latins' work is really Greek after all, and"
|
|
),
|
|
"timestamp": (23.76, 29.44),
|
|
},
|
|
],
|
|
}
|
|
]
|
|
|
|
transcript = processor.batch_decode(generated_ids, skip_special_tokens=True, output_offsets=True)
|
|
self.assertEqual(transcript, EXPECTED_TRANSCRIPT)
|