mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-23 14:29:01 +06:00

* add support for MLFLOW_FLATTEN_PARAMS * ensure key is str * fix style and update warning msg * Empty commit to trigger CI * fix bug in check_inits.py * add unittest for flatten_dict utils * fix 'NoneType' object is not callable on __del__ * add generic flatten_dict unittest to SPECIAL_MODULE_TO_TEST_MAP * fix style
46 lines
2.1 KiB
Python
46 lines
2.1 KiB
Python
# coding=utf-8
|
|
# Copyright 2019-present, the HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
from transformers.utils import flatten_dict
|
|
|
|
|
|
class GenericTester(unittest.TestCase):
|
|
def test_flatten_dict(self):
|
|
input_dict = {
|
|
"task_specific_params": {
|
|
"summarization": {"length_penalty": 1.0, "max_length": 128, "min_length": 12, "num_beams": 4},
|
|
"summarization_cnn": {"length_penalty": 2.0, "max_length": 142, "min_length": 56, "num_beams": 4},
|
|
"summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6},
|
|
}
|
|
}
|
|
expected_dict = {
|
|
"task_specific_params.summarization.length_penalty": 1.0,
|
|
"task_specific_params.summarization.max_length": 128,
|
|
"task_specific_params.summarization.min_length": 12,
|
|
"task_specific_params.summarization.num_beams": 4,
|
|
"task_specific_params.summarization_cnn.length_penalty": 2.0,
|
|
"task_specific_params.summarization_cnn.max_length": 142,
|
|
"task_specific_params.summarization_cnn.min_length": 56,
|
|
"task_specific_params.summarization_cnn.num_beams": 4,
|
|
"task_specific_params.summarization_xsum.length_penalty": 1.0,
|
|
"task_specific_params.summarization_xsum.max_length": 62,
|
|
"task_specific_params.summarization_xsum.min_length": 11,
|
|
"task_specific_params.summarization_xsum.num_beams": 6,
|
|
}
|
|
|
|
self.assertEqual(flatten_dict(input_dict), expected_dict)
|