mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-02 03:01:07 +06:00
177 lines
7.1 KiB
Python
177 lines
7.1 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 T5 Authors and HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Tokenization class for model T5."""
|
|
|
|
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
|
|
import logging
|
|
import os
|
|
import re
|
|
import six
|
|
from shutil import copyfile
|
|
|
|
from .tokenization_utils import PreTrainedTokenizer
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
SPIECE_UNDERLINE = u'▁'
|
|
|
|
####################################################
|
|
# Mapping from the keyword arguments names of Tokenizer `__init__`
|
|
# to file names for serializing Tokenizer instances
|
|
####################################################
|
|
VOCAB_FILES_NAMES = {'vocab_file': 'spiece.model'}
|
|
|
|
####################################################
|
|
# Mapping from the keyword arguments names of Tokenizer `__init__`
|
|
# to pretrained vocabulary URL for all the model shortcut names.
|
|
####################################################
|
|
PRETRAINED_VOCAB_FILES_MAP = {
|
|
'vocab_file':
|
|
{
|
|
't5-small': "https://s3.amazonaws.com/models.huggingface.co/bert/t5-spiece.model",
|
|
't5-base': "https://s3.amazonaws.com/models.huggingface.co/bert/t5-spiece.model",
|
|
't5-large': "https://s3.amazonaws.com/models.huggingface.co/bert/t5-spiece.model",
|
|
't5-3b': "https://s3.amazonaws.com/models.huggingface.co/bert/t5-spiece.model",
|
|
't5-11b': "https://s3.amazonaws.com/models.huggingface.co/bert/t5-spiece.model",
|
|
}
|
|
}
|
|
|
|
####################################################
|
|
# Mapping from model shortcut names to max length of inputs
|
|
####################################################
|
|
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
|
't5-small': 512,
|
|
't5-base': 512,
|
|
't5-large': 512,
|
|
't5-3b': 512,
|
|
't5-11b': 512,
|
|
}
|
|
|
|
class T5Tokenizer(PreTrainedTokenizer):
|
|
"""
|
|
SentencePiece based tokenizer. Peculiarities:
|
|
|
|
- requires `SentencePiece <https://github.com/google/sentencepiece>`_
|
|
- `extra_ids` add a number of extra ids added to the end of the vocabulary for use as sentinels.
|
|
These tokens are accessible as `<extra_id_{%d}>` where `{%d}` is a number between 0 and extra_ids-1.
|
|
Extra tokens are indexed from the end of the vocabulary up to beginnning (<extra_id_0> is the last token in the vocabulary)
|
|
(like in T5 preprocessing
|
|
see: https://github.com/google-research/text-to-text-transfer-transformer/blob/9fd7b14a769417be33bc6c850f9598764913c833/t5/data/preprocessors.py#L2117)
|
|
"""
|
|
vocab_files_names = VOCAB_FILES_NAMES
|
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
|
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
|
|
|
def __init__(self, vocab_file, eos_token="</s>", unk_token="<unk>",
|
|
pad_token="<pad>", extra_ids=100, additional_special_tokens=None, **kwargs):
|
|
# Add extra_ids to the special token list
|
|
if extra_ids > 0:
|
|
if additional_special_tokens is None:
|
|
additional_special_tokens = []
|
|
additional_special_tokens.extend([u"<extra_id_{}>".format(i) for i in range(extra_ids)])
|
|
|
|
super(T5Tokenizer, self).__init__(eos_token=eos_token, unk_token=unk_token,
|
|
pad_token=pad_token, additional_special_tokens=additional_special_tokens,
|
|
**kwargs)
|
|
|
|
try:
|
|
import sentencepiece as spm
|
|
except ImportError:
|
|
logger.warning("You need to install SentencePiece to use T5Tokenizer:"
|
|
"https://github.com/google/sentencepiece"
|
|
"pip install sentencepiece")
|
|
|
|
self.vocab_file = vocab_file
|
|
self._extra_ids = extra_ids
|
|
|
|
self.sp_model = spm.SentencePieceProcessor()
|
|
self.sp_model.Load(vocab_file)
|
|
|
|
@property
|
|
def vocab_size(self):
|
|
return self.sp_model.get_piece_size() + self._extra_ids
|
|
|
|
def __getstate__(self):
|
|
state = self.__dict__.copy()
|
|
state["sp_model"] = None
|
|
return state
|
|
|
|
def __setstate__(self, d):
|
|
self.__dict__ = d
|
|
try:
|
|
import sentencepiece as spm
|
|
except ImportError:
|
|
logger.warning("You need to install SentencePiece to use XLNetTokenizer: https://github.com/google/sentencepiece"
|
|
"pip install sentencepiece")
|
|
self.sp_model = spm.SentencePieceProcessor()
|
|
self.sp_model.Load(self.vocab_file)
|
|
|
|
def _tokenize(self, text, return_unicode=True, sample=False):
|
|
""" Take as input a string and return a list of strings (tokens) for words/sub-words
|
|
"""
|
|
if not sample:
|
|
pieces = self.sp_model.EncodeAsPieces(text)
|
|
else:
|
|
pieces = self.sp_model.SampleEncodeAsPieces(text, 64, 0.1)
|
|
|
|
# convert back to unicode for py2
|
|
if six.PY2 and return_unicode:
|
|
ret_pieces = []
|
|
for piece in pieces:
|
|
if isinstance(piece, str):
|
|
piece = piece.decode('utf-8')
|
|
ret_pieces.append(piece)
|
|
pieces = ret_pieces
|
|
|
|
return pieces
|
|
|
|
def _convert_token_to_id(self, token):
|
|
""" Converts a token (str/unicode) in an id using the vocab. """
|
|
if token.startswith(u"<extra_id_"):
|
|
l = re.match(r'<extra_id_(\d+)>', token)
|
|
num = int(l.group(1))
|
|
return self.vocab_size - num - 1
|
|
return self.sp_model.piece_to_id(token)
|
|
|
|
def _convert_id_to_token(self, index, return_unicode=True):
|
|
"""Converts an index (integer) in a token (string/unicode) using the vocab."""
|
|
if index < self.sp_model.get_piece_size():
|
|
token = self.sp_model.IdToPiece(index)
|
|
else:
|
|
token = u"<extra_id_{}>".format(self.vocab_size - 1 - index)
|
|
if six.PY2 and return_unicode and isinstance(token, str):
|
|
token = token.decode('utf-8')
|
|
return token
|
|
|
|
def convert_tokens_to_string(self, tokens):
|
|
""" Converts a sequence of tokens (string) in a single string. """
|
|
out_string = self.sp_model.decode_pieces(tokens)
|
|
return out_string
|
|
|
|
def save_vocabulary(self, save_directory):
|
|
""" Save the sentencepiece vocabulary (copy original file) and special tokens file
|
|
to a directory.
|
|
"""
|
|
if not os.path.isdir(save_directory):
|
|
logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
|
|
return
|
|
out_vocab_file = os.path.join(save_directory, VOCAB_FILES_NAMES['vocab_file'])
|
|
|
|
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
|
copyfile(self.vocab_file, out_vocab_file)
|
|
|
|
return (out_vocab_file,)
|