mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00
371 lines
18 KiB
Python
371 lines
18 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Image processor class for Bagel."""
|
|
from typing import Optional, Union
|
|
|
|
import numpy as np
|
|
|
|
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
|
from ...image_transforms import convert_to_rgb, resize, to_channel_dimension_format
|
|
from ...image_utils import (
|
|
IMAGENET_STANDARD_MEAN,
|
|
IMAGENET_STANDARD_STD,
|
|
ChannelDimension,
|
|
ImageInput,
|
|
PILImageResampling,
|
|
get_image_size,
|
|
infer_channel_dimension_format,
|
|
is_scaled_image,
|
|
make_flat_list_of_images,
|
|
to_numpy_array,
|
|
valid_images,
|
|
validate_preprocess_arguments,
|
|
)
|
|
from ...utils import (
|
|
TensorType,
|
|
filter_out_non_signature_kwargs,
|
|
is_vision_available,
|
|
logging,
|
|
)
|
|
|
|
|
|
if is_vision_available():
|
|
import PIL
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class BagelImageProcessor(BaseImageProcessor):
|
|
r"""
|
|
Constructs a Bagel image processor.
|
|
|
|
Args:
|
|
do_resize (`bool`, *optional*, defaults to `True`):
|
|
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
|
|
`do_resize` parameter in the `preprocess` method.
|
|
size (`dict`, *optional*, defaults to `{"height": 384, "width": 384}`):
|
|
Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
|
|
method.
|
|
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
|
|
Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`. Can be
|
|
overridden by the `resample` parameter in the `preprocess` method.
|
|
do_rescale (`bool`, *optional*, defaults to `True`):
|
|
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the
|
|
`do_rescale` parameter in the `preprocess` method.
|
|
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
|
Scale factor to use if rescaling the image. Only has an effect if `do_rescale` is set to `True`. Can be
|
|
overridden by the `rescale_factor` parameter in the `preprocess` method.
|
|
do_normalize (`bool`, *optional*, defaults to `True`):
|
|
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
|
|
method. Can be overridden by the `do_normalize` parameter in the `preprocess` method.
|
|
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
|
|
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
|
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
|
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
|
|
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
|
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
|
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
|
Whether to convert the image to RGB.
|
|
"""
|
|
|
|
model_input_names = ["pixel_values"]
|
|
|
|
def __init__(
|
|
self,
|
|
do_resize: bool = True,
|
|
size: Optional[dict[str, int]] = None,
|
|
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
|
do_rescale: bool = True,
|
|
rescale_factor: Union[int, float] = 1 / 255,
|
|
do_normalize: bool = True,
|
|
image_mean: Optional[Union[float, list[float]]] = None,
|
|
image_std: Optional[Union[float, list[float]]] = None,
|
|
do_convert_rgb: Optional[bool] = None,
|
|
**kwargs,
|
|
) -> None:
|
|
super().__init__(**kwargs)
|
|
size = size if size is not None else {"height": 384, "width": 384}
|
|
size = get_size_dict(size, default_to_square=True)
|
|
|
|
self.do_resize = do_resize
|
|
self.size = size
|
|
self.resample = resample
|
|
self.do_rescale = do_rescale
|
|
self.rescale_factor = rescale_factor
|
|
self.do_normalize = do_normalize
|
|
|
|
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
|
|
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
|
|
self.do_convert_rgb = do_convert_rgb
|
|
|
|
self.background_color = tuple([int(x * 255) for x in self.image_mean])
|
|
|
|
def resize(
|
|
self,
|
|
image: np.ndarray,
|
|
size: dict[str, int],
|
|
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
|
data_format: Optional[Union[str, ChannelDimension]] = None,
|
|
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
|
**kwargs,
|
|
) -> np.ndarray:
|
|
"""
|
|
Resize and pad an image to a square based on the longest edge in `size`.
|
|
|
|
Args:
|
|
image (`np.ndarray`):
|
|
Image to resize.
|
|
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
|
|
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`.
|
|
data_format (`ChannelDimension` or `str`, *optional*):
|
|
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
|
image is used. Can be one of:
|
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
|
- `None`: will be inferred from input
|
|
input_data_format (`ChannelDimension` or `str`, *optional*):
|
|
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
|
from the input image. Can be one of:
|
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
|
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
|
|
|
Returns:
|
|
`np.ndarray`: The resized image.
|
|
"""
|
|
if input_data_format is None:
|
|
input_data_format = infer_channel_dimension_format(image)
|
|
|
|
height, width = get_image_size(image, input_data_format)
|
|
max_size = max(height, width)
|
|
|
|
size = get_size_dict(size, default_to_square=True)
|
|
if size["height"] != size["width"]:
|
|
raise ValueError(
|
|
f"Output height and width must be the same. Got height={size['height']} and width={size['width']}"
|
|
)
|
|
size = size["height"]
|
|
|
|
delta = size / max_size
|
|
# Largest side becomes `size` and the other side is scaled according to the aspect ratio.
|
|
output_size_nonpadded = [int(height * delta), int(width * delta)]
|
|
|
|
image = resize(
|
|
image,
|
|
size=output_size_nonpadded,
|
|
resample=resample,
|
|
data_format=data_format,
|
|
input_data_format=input_data_format,
|
|
return_numpy=True,
|
|
**kwargs,
|
|
)
|
|
# Expand and pad the images to obtain a square image of dimensions `size x size`
|
|
image = self.pad_to_square(
|
|
image=image,
|
|
input_data_format=input_data_format,
|
|
)
|
|
return image
|
|
|
|
@filter_out_non_signature_kwargs()
|
|
def preprocess(
|
|
self,
|
|
images: ImageInput,
|
|
do_resize: Optional[bool] = None,
|
|
size: Optional[dict[str, int]] = None,
|
|
resample: PILImageResampling = None,
|
|
do_rescale: Optional[bool] = None,
|
|
rescale_factor: Optional[float] = None,
|
|
do_normalize: Optional[bool] = None,
|
|
image_mean: Optional[Union[float, list[float]]] = None,
|
|
image_std: Optional[Union[float, list[float]]] = None,
|
|
return_tensors: Optional[Union[str, TensorType]] = None,
|
|
do_convert_rgb: Optional[bool] = None,
|
|
data_format: ChannelDimension = ChannelDimension.FIRST,
|
|
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
|
) -> PIL.Image.Image:
|
|
"""
|
|
Preprocess an image or batch of images.
|
|
|
|
Args:
|
|
images (`ImageInput`):
|
|
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
|
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
|
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
|
Whether to resize the image.
|
|
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
|
Controls the size of the image after `resize`. The shortest edge of the image is resized to
|
|
`size["shortest_edge"]` whilst preserving the aspect ratio. If the longest edge of this resized image
|
|
is > `int(size["shortest_edge"] * (1333 / 800))`, then the image is resized again to make the longest
|
|
edge equal to `int(size["shortest_edge"] * (1333 / 800))`.
|
|
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
|
|
Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`.
|
|
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
|
Whether to rescale the image values between [0 - 1].
|
|
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
|
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
|
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
|
Whether to normalize the image.
|
|
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
|
Image mean to normalize the image by if `do_normalize` is set to `True`.
|
|
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
|
Image standard deviation to normalize the image by if `do_normalize` is set to `True`.
|
|
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
|
Whether to convert the image to RGB.
|
|
return_tensors (`str` or `TensorType`, *optional*):
|
|
The type of tensors to return. Can be one of:
|
|
- Unset: Return a list of `np.ndarray`.
|
|
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
|
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
|
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
|
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
|
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
|
The channel dimension format for the output image. Can be one of:
|
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
|
- Unset: Use the channel dimension format of the input image.
|
|
input_data_format (`ChannelDimension` or `str`, *optional*):
|
|
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
|
from the input image. Can be one of:
|
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
|
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
|
"""
|
|
do_resize = do_resize if do_resize is not None else self.do_resize
|
|
resample = resample if resample is not None else self.resample
|
|
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
|
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
|
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
|
image_mean = image_mean if image_mean is not None else self.image_mean
|
|
image_std = image_std if image_std is not None else self.image_std
|
|
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
|
|
|
size = size if size is not None else self.size
|
|
size = get_size_dict(size, default_to_square=False)
|
|
images = make_flat_list_of_images(images)
|
|
|
|
if not valid_images(images):
|
|
raise ValueError(
|
|
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
|
"torch.Tensor, tf.Tensor or jax.ndarray."
|
|
)
|
|
|
|
validate_preprocess_arguments(
|
|
do_rescale=do_rescale,
|
|
rescale_factor=rescale_factor,
|
|
do_normalize=do_normalize,
|
|
image_mean=image_mean,
|
|
image_std=image_std,
|
|
do_resize=do_resize,
|
|
size=size,
|
|
resample=resample,
|
|
)
|
|
# PIL RGBA images are converted to RGB
|
|
if do_convert_rgb:
|
|
images = [convert_to_rgb(image) for image in images]
|
|
|
|
# All transformations expect numpy arrays.
|
|
images = [to_numpy_array(image) for image in images]
|
|
|
|
if do_rescale and is_scaled_image(images[0]):
|
|
logger.warning_once(
|
|
"It looks like you are trying to rescale already rescaled images. If the input"
|
|
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
|
)
|
|
|
|
if input_data_format is None:
|
|
# We assume that all images have the same channel dimension format.
|
|
input_data_format = infer_channel_dimension_format(images[0])
|
|
|
|
all_images = []
|
|
for image in images:
|
|
if do_resize:
|
|
image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
|
|
if do_rescale:
|
|
image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
|
|
if do_normalize:
|
|
image = self.normalize(
|
|
image=image, mean=image_mean, std=image_std, input_data_format=input_data_format
|
|
)
|
|
|
|
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
|
|
all_images.append(image)
|
|
|
|
data = {"pixel_values": all_images}
|
|
return BatchFeature(data=data, tensor_type=return_tensors)
|
|
|
|
def pad_to_square(
|
|
self,
|
|
image: np.ndarray,
|
|
data_format: Optional[Union[str, ChannelDimension]] = None,
|
|
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
|
) -> np.array:
|
|
"""
|
|
Pads an image to a square based on the longest edge.
|
|
|
|
Args:
|
|
image (`np.ndarray`):
|
|
The image to pad.
|
|
data_format (`str` or `ChannelDimension`, *optional*):
|
|
The channel dimension format for the output image. Can be one of:
|
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
|
If unset, will use same as the input image.
|
|
input_data_format (`str` or `ChannelDimension`, *optional*):
|
|
The channel dimension format for the input image. Can be one of:
|
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
|
|
|
Returns:
|
|
`np.ndarray`: The padded image.
|
|
"""
|
|
height, width = get_image_size(image, input_data_format)
|
|
num_channels = image.shape[0] if input_data_format == ChannelDimension.FIRST else image.shape[-1]
|
|
|
|
if height == width:
|
|
image = (
|
|
to_channel_dimension_format(image, data_format, input_data_format)
|
|
if data_format is not None
|
|
else image
|
|
)
|
|
return image
|
|
|
|
max_dim = max(height, width)
|
|
|
|
if input_data_format == ChannelDimension.FIRST:
|
|
result = np.zeros((num_channels, max_dim, max_dim), dtype=image.dtype)
|
|
for i, color in enumerate(self.background_color):
|
|
result[i, :, :] = color
|
|
if width > height:
|
|
start = (max_dim - height) // 2
|
|
result[:, start : start + height, :] = image
|
|
else:
|
|
start = (max_dim - width) // 2
|
|
result[:, :, start : start + width] = image
|
|
else:
|
|
result = np.zeros((max_dim, max_dim, num_channels), dtype=image.dtype)
|
|
for i, color in enumerate(self.background_color):
|
|
result[:, :, i] = color
|
|
if width > height:
|
|
start = (max_dim - height) // 2
|
|
result[start : start + height, :, :] = image
|
|
else:
|
|
start = (max_dim - width) // 2
|
|
result[:, start : start + width, :] = image
|
|
|
|
return result
|
|
|
|
|
|
__all__ = ["BagelImageProcessor"] |