mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 18:22:34 +06:00
596 lines
25 KiB
Python
596 lines
25 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HugginFace Inc. team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" PyTorch Transformer XL model training script.
|
|
Adapted from https://github.com/kimiyoung/transformer-xl.
|
|
In particular https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/eval.py
|
|
|
|
This script with default values train a Transformer-XL on WikiText 103
|
|
"""
|
|
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
|
|
import os
|
|
import functools
|
|
import argparse
|
|
import logging
|
|
import time
|
|
import math
|
|
import sys
|
|
from io import open
|
|
import itertools
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.optim as optim
|
|
|
|
from pytorch_pretrained_bert import TransfoXLModel, TransfoXLConfig
|
|
from pytorch_pretrained_bert.tokenization_transfo_xl import get_lm_corpus
|
|
|
|
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
|
|
datefmt = '%m/%d/%Y %H:%M:%S',
|
|
level = logging.INFO)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
parser = argparse.ArgumentParser(description='PyTorch Transformer Language Model')
|
|
parser.add_argument('--data', type=str, default='../data/wikitext-103',
|
|
help='location of the data corpus')
|
|
parser.add_argument('--dataset', type=str, default='wt103',
|
|
choices=['wt103', 'lm1b', 'enwik8', 'text8'],
|
|
help='dataset name')
|
|
parser.add_argument('--n_layer', type=int, default=12,
|
|
help='number of total layers')
|
|
parser.add_argument('--n_head', type=int, default=10,
|
|
help='number of heads')
|
|
parser.add_argument('--d_head', type=int, default=50,
|
|
help='head dimension')
|
|
parser.add_argument('--d_embed', type=int, default=-1,
|
|
help='embedding dimension')
|
|
parser.add_argument('--d_model', type=int, default=500,
|
|
help='model dimension')
|
|
parser.add_argument('--d_inner', type=int, default=1000,
|
|
help='inner dimension in FF')
|
|
parser.add_argument('--dropout', type=float, default=0.0,
|
|
help='global dropout rate')
|
|
parser.add_argument('--dropatt', type=float, default=0.0,
|
|
help='attention probability dropout rate')
|
|
parser.add_argument('--init', default='normal', type=str,
|
|
help='parameter initializer to use.')
|
|
parser.add_argument('--emb_init', default='normal', type=str,
|
|
help='parameter initializer to use.')
|
|
parser.add_argument('--init_range', type=float, default=0.1,
|
|
help='parameters initialized by U(-init_range, init_range)')
|
|
parser.add_argument('--emb_init_range', type=float, default=0.01,
|
|
help='parameters initialized by U(-init_range, init_range)')
|
|
parser.add_argument('--init_std', type=float, default=0.02,
|
|
help='parameters initialized by N(0, init_std)')
|
|
parser.add_argument('--proj_init_std', type=float, default=0.01,
|
|
help='parameters initialized by N(0, init_std)')
|
|
parser.add_argument('--optim', default='adam', type=str,
|
|
choices=['adam', 'sgd', 'adagrad'],
|
|
help='optimizer to use.')
|
|
parser.add_argument('--lr', type=float, default=0.00025,
|
|
help='initial learning rate (0.00025|5 for adam|sgd)')
|
|
parser.add_argument('--mom', type=float, default=0.0,
|
|
help='momentum for sgd')
|
|
parser.add_argument('--scheduler', default='cosine', type=str,
|
|
choices=['cosine', 'inv_sqrt', 'dev_perf', 'constant'],
|
|
help='lr scheduler to use.')
|
|
parser.add_argument('--warmup_step', type=int, default=0,
|
|
help='upper epoch limit')
|
|
parser.add_argument('--decay_rate', type=float, default=0.5,
|
|
help='decay factor when ReduceLROnPlateau is used')
|
|
parser.add_argument('--lr_min', type=float, default=0.0,
|
|
help='minimum learning rate during annealing')
|
|
parser.add_argument('--clip', type=float, default=0.25,
|
|
help='gradient clipping')
|
|
parser.add_argument('--clip_nonemb', action='store_true',
|
|
help='only clip the gradient of non-embedding params')
|
|
parser.add_argument('--max_step', type=int, default=100000,
|
|
help='upper epoch limit')
|
|
parser.add_argument('--batch_size', type=int, default=60,
|
|
help='batch size')
|
|
parser.add_argument('--batch_chunk', type=int, default=1,
|
|
help='split batch into chunks to save memory')
|
|
parser.add_argument('--tgt_len', type=int, default=70,
|
|
help='number of tokens to predict')
|
|
parser.add_argument('--eval_tgt_len', type=int, default=50,
|
|
help='number of tokens to predict for evaluation')
|
|
parser.add_argument('--ext_len', type=int, default=0,
|
|
help='length of the extended context')
|
|
parser.add_argument('--mem_len', type=int, default=0,
|
|
help='length of the retained previous heads')
|
|
parser.add_argument('--not_tied', action='store_true',
|
|
help='do not tie the word embedding and softmax weights')
|
|
parser.add_argument('--seed', type=int, default=1111,
|
|
help='random seed')
|
|
parser.add_argument('--cuda', action='store_true',
|
|
help='use CUDA')
|
|
parser.add_argument('--adaptive', action='store_true',
|
|
help='use adaptive softmax')
|
|
parser.add_argument('--div_val', type=int, default=1,
|
|
help='divident value for adapative input and softmax')
|
|
parser.add_argument('--pre_lnorm', action='store_true',
|
|
help='apply LayerNorm to the input instead of the output')
|
|
parser.add_argument('--varlen', action='store_true',
|
|
help='use variable length')
|
|
parser.add_argument('--multi_gpu', action='store_true',
|
|
help='use multiple GPU')
|
|
parser.add_argument('--log-interval', type=int, default=200,
|
|
help='report interval')
|
|
parser.add_argument('--eval-interval', type=int, default=4000,
|
|
help='evaluation interval')
|
|
parser.add_argument('--work_dir', default='LM-TFM', type=str,
|
|
help='experiment directory.')
|
|
parser.add_argument('--restart', action='store_true',
|
|
help='restart training from the saved checkpoint')
|
|
parser.add_argument('--restart_dir', type=str, default='',
|
|
help='restart dir')
|
|
parser.add_argument('--debug', action='store_true',
|
|
help='run in debug mode (do not create exp dir)')
|
|
parser.add_argument('--same_length', action='store_true',
|
|
help='use the same attn length for all tokens')
|
|
parser.add_argument('--attn_type', type=int, default=0,
|
|
help='attention type. 0 for ours, 1 for Shaw et al,'
|
|
'2 for Vaswani et al, 3 for Al Rfou et al.')
|
|
parser.add_argument('--clamp_len', type=int, default=-1,
|
|
help='use the same pos embeddings after clamp_len')
|
|
parser.add_argument('--eta_min', type=float, default=0.0,
|
|
help='min learning rate for cosine scheduler')
|
|
parser.add_argument('--gpu0_bsz', type=int, default=-1,
|
|
help='batch size on gpu 0')
|
|
parser.add_argument('--max_eval_steps', type=int, default=-1,
|
|
help='max eval steps')
|
|
parser.add_argument('--sample_softmax', type=int, default=-1,
|
|
help='number of samples in sampled softmax')
|
|
parser.add_argument('--patience', type=int, default=0,
|
|
help='patience')
|
|
parser.add_argument('--finetune_v2', action='store_true',
|
|
help='finetune v2')
|
|
parser.add_argument('--finetune_v3', action='store_true',
|
|
help='finetune v3')
|
|
parser.add_argument('--fp16', action='store_true',
|
|
help='Run in pseudo-fp16 mode (fp16 storage fp32 math).')
|
|
parser.add_argument('--static-loss-scale', type=float, default=1,
|
|
help='Static loss scale, positive power of 2 values can '
|
|
'improve fp16 convergence.')
|
|
parser.add_argument('--dynamic-loss-scale', action='store_true',
|
|
help='Use dynamic loss scaling. If supplied, this argument'
|
|
' supersedes --static-loss-scale.')
|
|
args = parser.parse_args()
|
|
args.tied = not args.not_tied
|
|
|
|
if args.d_embed < 0:
|
|
args.d_embed = args.d_model
|
|
|
|
assert args.ext_len >= 0, 'extended context length must be non-negative'
|
|
assert args.batch_size % args.batch_chunk == 0
|
|
|
|
args.work_dir = '{}-{}'.format(args.work_dir, args.dataset)
|
|
args.work_dir = os.path.join(args.work_dir, time.strftime('%Y%m%d-%H%M%S'))
|
|
# logging = create_exp_dir(args.work_dir,
|
|
# scripts_to_save=['train.py', 'mem_transformer.py'], debug=args.debug)
|
|
|
|
# Set the random seed manually for reproducibility.
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
if torch.cuda.is_available():
|
|
if not args.cuda:
|
|
print('WARNING: You have a CUDA device, so you should probably run with --cuda')
|
|
else:
|
|
torch.cuda.manual_seed_all(args.seed)
|
|
|
|
# Validate `--fp16` option
|
|
if args.fp16:
|
|
if not args.cuda:
|
|
print('WARNING: --fp16 requires --cuda, ignoring --fp16 option')
|
|
args.fp16 = False
|
|
else:
|
|
try:
|
|
from apex.fp16_utils import FP16_Optimizer
|
|
except ImportError:
|
|
print('WARNING: apex not installed, ignoring --fp16 option')
|
|
args.fp16 = False
|
|
|
|
device = torch.device('cuda' if args.cuda else 'cpu')
|
|
|
|
###############################################################################
|
|
# Load data
|
|
###############################################################################
|
|
corpus = get_lm_corpus(args.data, args.dataset)
|
|
ntokens = len(corpus.vocab)
|
|
args.n_token = ntokens
|
|
|
|
eval_batch_size = 10
|
|
tr_iter = corpus.get_iterator('train', args.batch_size, args.tgt_len,
|
|
device=device, ext_len=args.ext_len)
|
|
va_iter = corpus.get_iterator('valid', eval_batch_size, args.eval_tgt_len,
|
|
device=device, ext_len=args.ext_len)
|
|
te_iter = corpus.get_iterator('test', eval_batch_size, args.eval_tgt_len,
|
|
device=device, ext_len=args.ext_len)
|
|
|
|
# adaptive softmax / embedding
|
|
cutoffs = []
|
|
if args.adaptive:
|
|
assert args.dataset in ['wt103', 'lm1b']
|
|
if args.dataset == 'wt103':
|
|
cutoffs = [20000, 40000, 200000]
|
|
proj_share_all_but_first = True
|
|
elif args.dataset == 'lm1b':
|
|
cutoffs = [60000, 100000, 640000]
|
|
proj_share_all_but_first = False
|
|
|
|
###############################################################################
|
|
# Build the model
|
|
###############################################################################
|
|
def init_weight(weight):
|
|
if args.init == 'uniform':
|
|
nn.init.uniform_(weight, -args.init_range, args.init_range)
|
|
elif args.init == 'normal':
|
|
nn.init.normal_(weight, 0.0, args.init_std)
|
|
|
|
def init_bias(bias):
|
|
nn.init.constant_(bias, 0.0)
|
|
|
|
def weights_init(m):
|
|
classname = m.__class__.__name__
|
|
if classname.find('Linear') != -1:
|
|
if hasattr(m, 'weight') and m.weight is not None:
|
|
init_weight(m.weight)
|
|
if hasattr(m, 'bias') and m.bias is not None:
|
|
init_bias(m.bias)
|
|
elif classname.find('AdaptiveEmbedding') != -1:
|
|
if hasattr(m, 'emb_projs'):
|
|
for i in range(len(m.emb_projs)):
|
|
if m.emb_projs[i] is not None:
|
|
nn.init.normal_(m.emb_projs[i], 0.0, args.proj_init_std)
|
|
elif classname.find('Embedding') != -1:
|
|
if hasattr(m, 'weight'):
|
|
init_weight(m.weight)
|
|
elif classname.find('ProjectedAdaptiveLogSoftmax') != -1:
|
|
if hasattr(m, 'cluster_weight') and m.cluster_weight is not None:
|
|
init_weight(m.cluster_weight)
|
|
if hasattr(m, 'cluster_bias') and m.cluster_bias is not None:
|
|
init_bias(m.cluster_bias)
|
|
if hasattr(m, 'out_projs'):
|
|
for i in range(len(m.out_projs)):
|
|
if m.out_projs[i] is not None:
|
|
nn.init.normal_(m.out_projs[i], 0.0, args.proj_init_std)
|
|
elif classname.find('LayerNorm') != -1:
|
|
if hasattr(m, 'weight'):
|
|
nn.init.normal_(m.weight, 1.0, args.init_std)
|
|
if hasattr(m, 'bias') and m.bias is not None:
|
|
init_bias(m.bias)
|
|
elif classname.find('TransformerLM') != -1:
|
|
if hasattr(m, 'r_emb'):
|
|
init_weight(m.r_emb)
|
|
if hasattr(m, 'r_w_bias'):
|
|
init_weight(m.r_w_bias)
|
|
if hasattr(m, 'r_r_bias'):
|
|
init_weight(m.r_r_bias)
|
|
if hasattr(m, 'r_bias'):
|
|
init_bias(m.r_bias)
|
|
|
|
def update_dropout(m):
|
|
classname = m.__class__.__name__
|
|
if classname.find('Dropout') != -1:
|
|
if hasattr(m, 'p'):
|
|
m.p = args.dropout
|
|
|
|
def update_dropatt(m):
|
|
if hasattr(m, 'dropatt'):
|
|
m.dropatt.p = args.dropatt
|
|
|
|
if args.restart:
|
|
with open(os.path.join(args.restart_dir, 'model.pt'), 'rb') as f:
|
|
model = torch.load(f)
|
|
if not args.fp16:
|
|
model = model.float()
|
|
model.apply(update_dropout)
|
|
model.apply(update_dropatt)
|
|
else:
|
|
config = TransfoXLConfig(ntokens, n_layer=args.n_layer, n_head=args.n_head,
|
|
d_model=args.d_model, d_head=args.d_head, d_inner=args.d_inner,
|
|
dropout=args.dropout, dropatt=args.dropatt,
|
|
tie_weight=args.tied, d_embed=args.d_embed, div_val=args.div_val,
|
|
proj_share_all_but_first=proj_share_all_but_first,
|
|
pre_lnorm=args.pre_lnorm, tgt_len=args.tgt_len,
|
|
ext_len=args.ext_len, mem_len=args.mem_len, cutoffs=cutoffs,
|
|
same_length=args.same_length, attn_type=args.attn_type,
|
|
clamp_len=args.clamp_len, sample_softmax=args.sample_softmax)
|
|
model = TransfoXLModel(config)
|
|
model.apply(weights_init)
|
|
model.word_emb.apply(weights_init) # ensure embedding init is not overridden by out_layer in case of weight sharing
|
|
args.n_all_param = sum([p.nelement() for p in model.parameters()])
|
|
args.n_nonemb_param = sum([p.nelement() for p in model.layers.parameters()])
|
|
|
|
if args.fp16:
|
|
model = model.half()
|
|
|
|
if args.multi_gpu:
|
|
model = model.to(device)
|
|
if args.gpu0_bsz >= 0:
|
|
raise NotImplementedError
|
|
# para_model = BalancedDataParallel(args.gpu0_bsz // args.batch_chunk,
|
|
# model, dim=1).to(device)
|
|
else:
|
|
para_model = nn.DataParallel(model, dim=1).to(device)
|
|
else:
|
|
para_model = model.to(device)
|
|
|
|
#### optimizer
|
|
if args.optim.lower() == 'sgd':
|
|
if args.sample_softmax > 0:
|
|
dense_params, sparse_params = [], []
|
|
for param in model.parameters():
|
|
if param.size() == model.word_emb.weight.size():
|
|
sparse_params.append(param)
|
|
else:
|
|
dense_params.append(param)
|
|
optimizer_sparse = optim.SGD(sparse_params, lr=args.lr * 2)
|
|
optimizer = optim.SGD(dense_params, lr=args.lr, momentum=args.mom)
|
|
else:
|
|
optimizer = optim.SGD(model.parameters(), lr=args.lr,
|
|
momentum=args.mom)
|
|
elif args.optim.lower() == 'adam':
|
|
if args.sample_softmax > 0:
|
|
dense_params, sparse_params = [], []
|
|
for param in model.parameters():
|
|
if param.size() == model.word_emb.weight.size():
|
|
sparse_params.append(param)
|
|
else:
|
|
dense_params.append(param)
|
|
optimizer_sparse = optim.SparseAdam(sparse_params, lr=args.lr)
|
|
optimizer = optim.Adam(dense_params, lr=args.lr)
|
|
else:
|
|
optimizer = optim.Adam(model.parameters(), lr=args.lr)
|
|
elif args.optim.lower() == 'adagrad':
|
|
optimizer = optim.Adagrad(model.parameters(), lr=args.lr)
|
|
|
|
#### scheduler
|
|
if args.scheduler == 'cosine':
|
|
# here we do not set eta_min to lr_min to be backward compatible
|
|
# because in previous versions eta_min is default to 0
|
|
# rather than the default value of lr_min 1e-6
|
|
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer,
|
|
args.max_step, eta_min=args.eta_min) # should use eta_min arg
|
|
if args.sample_softmax > 0:
|
|
scheduler_sparse = optim.lr_scheduler.CosineAnnealingLR(optimizer_sparse,
|
|
args.max_step, eta_min=args.eta_min) # should use eta_min arg
|
|
elif args.scheduler == 'inv_sqrt':
|
|
# originally used for Transformer (in Attention is all you need)
|
|
def lr_lambda(step):
|
|
# return a multiplier instead of a learning rate
|
|
if step == 0 and args.warmup_step == 0:
|
|
return 1.
|
|
else:
|
|
return 1. / (step ** 0.5) if step > args.warmup_step \
|
|
else step / (args.warmup_step ** 1.5)
|
|
scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lr_lambda)
|
|
elif args.scheduler == 'dev_perf':
|
|
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
|
|
factor=args.decay_rate, patience=args.patience, min_lr=args.lr_min)
|
|
if args.sample_softmax > 0:
|
|
scheduler_sparse = optim.lr_scheduler.ReduceLROnPlateau(optimizer_sparse,
|
|
factor=args.decay_rate, patience=args.patience, min_lr=args.lr_min)
|
|
elif args.scheduler == 'constant':
|
|
pass
|
|
|
|
if args.cuda and args.fp16:
|
|
# If args.dynamic_loss_scale is False, static_loss_scale will be used.
|
|
# If args.dynamic_loss_scale is True, it will take precedence over static_loss_scale.
|
|
optimizer = FP16_Optimizer(optimizer,
|
|
static_loss_scale = args.static_loss_scale,
|
|
dynamic_loss_scale = args.dynamic_loss_scale,
|
|
dynamic_loss_args = {'init_scale': 2 ** 16})
|
|
|
|
if args.restart:
|
|
if os.path.exists(os.path.join(args.restart_dir, 'optimizer.pt')):
|
|
with open(os.path.join(args.restart_dir, 'optimizer.pt'), 'rb') as f:
|
|
opt_state_dict = torch.load(f)
|
|
optimizer.load_state_dict(opt_state_dict)
|
|
else:
|
|
print('Optimizer was not saved. Start from scratch.')
|
|
|
|
logger.info('=' * 100)
|
|
for k, v in args.__dict__.items():
|
|
logger.info(' - {} : {}'.format(k, v))
|
|
logger.info('=' * 100)
|
|
logger.info('#params = {}'.format(args.n_all_param))
|
|
logger.info('#non emb params = {}'.format(args.n_nonemb_param))
|
|
|
|
###############################################################################
|
|
# Training code
|
|
###############################################################################
|
|
|
|
def evaluate(eval_iter):
|
|
# Turn on evaluation mode which disables dropout.
|
|
model.eval()
|
|
|
|
# If the model does not use memory at all, make the ext_len longer.
|
|
# Otherwise, make the mem_len longer and keep the ext_len the same.
|
|
if args.mem_len == 0:
|
|
model.reset_length(args.eval_tgt_len,
|
|
args.ext_len+args.tgt_len-args.eval_tgt_len, args.mem_len)
|
|
else:
|
|
model.reset_length(args.eval_tgt_len,
|
|
args.ext_len, args.mem_len+args.tgt_len-args.eval_tgt_len)
|
|
|
|
# Evaluation
|
|
total_len, total_loss = 0, 0.
|
|
with torch.no_grad():
|
|
mems = tuple()
|
|
for i, (data, target, seq_len) in enumerate(eval_iter):
|
|
if args.max_eval_steps > 0 and i >= args.max_eval_steps:
|
|
break
|
|
ret = model(data, target, *mems)
|
|
loss, mems = ret
|
|
loss = loss.mean()
|
|
total_loss += seq_len * loss.float().item()
|
|
total_len += seq_len
|
|
|
|
# Switch back to the training mode
|
|
model.reset_length(args.tgt_len, args.ext_len, args.mem_len)
|
|
model.train()
|
|
|
|
return total_loss / total_len
|
|
|
|
|
|
def train():
|
|
# Turn on training mode which enables dropout.
|
|
global train_step, train_loss, best_val_loss, eval_start_time, log_start_time
|
|
model.train()
|
|
if args.batch_chunk > 1:
|
|
mems = [tuple() for _ in range(args.batch_chunk)]
|
|
else:
|
|
mems = tuple()
|
|
train_iter = tr_iter.get_varlen_iter() if args.varlen else tr_iter
|
|
for batch, (data, target, seq_len) in enumerate(train_iter):
|
|
model.zero_grad()
|
|
if args.batch_chunk > 1:
|
|
data_chunks = torch.chunk(data, args.batch_chunk, 1)
|
|
target_chunks = torch.chunk(target, args.batch_chunk, 1)
|
|
for i in range(args.batch_chunk):
|
|
data_i = data_chunks[i].contiguous()
|
|
target_i = target_chunks[i].contiguous()
|
|
ret = para_model(data_i, target_i, *mems[i])
|
|
loss, mems[i] = ret[0], ret[1:]
|
|
loss = loss.float().mean().type_as(loss) / args.batch_chunk
|
|
if args.fp16:
|
|
optimizer.backward(loss)
|
|
else:
|
|
loss.backward()
|
|
train_loss += loss.float().item()
|
|
else:
|
|
ret = para_model(data, target, *mems)
|
|
loss, mems = ret[0], ret[1:]
|
|
loss = loss.float().mean().type_as(loss)
|
|
if args.fp16:
|
|
optimizer.backward(loss)
|
|
else:
|
|
loss.backward()
|
|
train_loss += loss.float().item()
|
|
|
|
if args.fp16:
|
|
optimizer.clip_master_grads(args.clip)
|
|
else:
|
|
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
|
|
|
|
optimizer.step()
|
|
if args.sample_softmax > 0:
|
|
optimizer_sparse.step()
|
|
|
|
# step-wise learning rate annealing
|
|
train_step += 1
|
|
if args.scheduler in ['cosine', 'constant', 'dev_perf']:
|
|
# linear warmup stage
|
|
if train_step < args.warmup_step:
|
|
curr_lr = args.lr * train_step / args.warmup_step
|
|
optimizer.param_groups[0]['lr'] = curr_lr
|
|
if args.sample_softmax > 0:
|
|
optimizer_sparse.param_groups[0]['lr'] = curr_lr * 2
|
|
else:
|
|
if args.scheduler == 'cosine':
|
|
scheduler.step(train_step)
|
|
if args.sample_softmax > 0:
|
|
scheduler_sparse.step(train_step)
|
|
elif args.scheduler == 'inv_sqrt':
|
|
scheduler.step(train_step)
|
|
|
|
if train_step % args.log_interval == 0:
|
|
cur_loss = train_loss / args.log_interval
|
|
elapsed = time.time() - log_start_time
|
|
log_str = '| epoch {:3d} step {:>8d} | {:>6d} batches | lr {:.3g} ' \
|
|
'| ms/batch {:5.2f} | loss {:5.2f}'.format(
|
|
epoch, train_step, batch+1, optimizer.param_groups[0]['lr'],
|
|
elapsed * 1000 / args.log_interval, cur_loss)
|
|
if args.dataset in ['enwik8', 'text8']:
|
|
log_str += ' | bpc {:9.5f}'.format(cur_loss / math.log(2))
|
|
else:
|
|
log_str += ' | ppl {:9.3f}'.format(math.exp(cur_loss))
|
|
logger.info(log_str)
|
|
train_loss = 0
|
|
log_start_time = time.time()
|
|
|
|
if train_step % args.eval_interval == 0:
|
|
val_loss = evaluate(va_iter)
|
|
logger.info('-' * 100)
|
|
log_str = '| Eval {:3d} at step {:>8d} | time: {:5.2f}s ' \
|
|
'| valid loss {:5.2f}'.format(
|
|
train_step // args.eval_interval, train_step,
|
|
(time.time() - eval_start_time), val_loss)
|
|
if args.dataset in ['enwik8', 'text8']:
|
|
log_str += ' | bpc {:9.5f}'.format(val_loss / math.log(2))
|
|
else:
|
|
log_str += ' | valid ppl {:9.3f}'.format(math.exp(val_loss))
|
|
logger.info(log_str)
|
|
logger.info('-' * 100)
|
|
# Save the model if the validation loss is the best we've seen so far.
|
|
if not best_val_loss or val_loss < best_val_loss:
|
|
if not args.debug:
|
|
with open(os.path.join(args.work_dir, 'model.pt'), 'wb') as f:
|
|
torch.save(model, f)
|
|
with open(os.path.join(args.work_dir, 'optimizer.pt'), 'wb') as f:
|
|
torch.save(optimizer.state_dict(), f)
|
|
best_val_loss = val_loss
|
|
|
|
# dev-performance based learning rate annealing
|
|
if args.scheduler == 'dev_perf':
|
|
scheduler.step(val_loss)
|
|
if args.sample_softmax > 0:
|
|
scheduler_sparse.step(val_loss)
|
|
|
|
eval_start_time = time.time()
|
|
|
|
if train_step == args.max_step:
|
|
break
|
|
|
|
# Loop over epochs.
|
|
train_step = 0
|
|
train_loss = 0
|
|
best_val_loss = None
|
|
|
|
log_start_time = time.time()
|
|
eval_start_time = time.time()
|
|
|
|
# At any point you can hit Ctrl + C to break out of training early.
|
|
try:
|
|
for epoch in itertools.count(start=1):
|
|
train()
|
|
if train_step == args.max_step:
|
|
logger.info('-' * 100)
|
|
logger.info('End of training')
|
|
break
|
|
except KeyboardInterrupt:
|
|
logger.info('-' * 100)
|
|
logger.info('Exiting from training early')
|
|
|
|
# Load the best saved model.
|
|
with open(os.path.join(args.work_dir, 'model.pt'), 'rb') as f:
|
|
model = torch.load(f)
|
|
para_model = model.to(device)
|
|
|
|
# Run on test data.
|
|
test_loss = evaluate(te_iter)
|
|
logger.info('=' * 100)
|
|
if args.dataset in ['enwik8', 'text8']:
|
|
logger.info('| End of training | test loss {:5.2f} | test bpc {:9.5f}'.format(
|
|
test_loss, test_loss / math.log(2)))
|
|
else:
|
|
logger.info('| End of training | test loss {:5.2f} | test ppl {:9.3f}'.format(
|
|
test_loss, math.exp(test_loss)))
|
|
logger.info('=' * 100)
|