transformers/examples/summarization/bart/utils.py

44 lines
1.6 KiB
Python

import os
from torch.utils.data import Dataset
class SummarizationDataset(Dataset):
def __init__(self, tokenizer, data_dir="./cnn-dailymail/cnn_dm/", type_path="train", block_size=1024):
super(SummarizationDataset,).__init__()
self.tokenizer = tokenizer
self.source = []
self.target = []
print("loading " + type_path + " source.")
with open(os.path.join(data_dir, type_path + ".source"), "r") as f:
for text in f.readlines(): # each text is a line and a full story
tokenized = tokenizer.batch_encode_plus(
[text], max_length=block_size, pad_to_max_length=True, return_tensors="pt"
)
self.source.append(tokenized)
f.close()
print("loading " + type_path + " target.")
with open(os.path.join(data_dir, type_path + ".target"), "r") as f:
for text in f.readlines(): # each text is a line and a summary
tokenized = tokenizer.batch_encode_plus(
[text], max_length=56, pad_to_max_length=True, return_tensors="pt"
)
self.target.append(tokenized)
f.close()
def __len__(self):
return len(self.source)
def __getitem__(self, index):
source_ids = self.source[index]["input_ids"].squeeze()
target_ids = self.target[index]["input_ids"].squeeze()
src_mask = self.source[index]["attention_mask"].squeeze() # might need to squeeze
return {"source_ids": source_ids, "source_mask": src_mask, "target_ids": target_ids}