transformers/tests/agents/test_tools_common.py
Aymeric Roucher e6d9f39dd7
Decorator for easier tool building (#33439)
* Decorator for tool building
2024-09-18 11:07:51 +02:00

172 lines
5.5 KiB
Python

# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from pathlib import Path
from typing import Dict, Union
import numpy as np
import pytest
from transformers import is_torch_available, is_vision_available
from transformers.agents.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText
from transformers.agents.tools import Tool, tool
from transformers.testing_utils import get_tests_dir, is_agent_test
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
AUTHORIZED_TYPES = ["string", "boolean", "integer", "number", "audio", "image", "any"]
def create_inputs(tool_inputs: Dict[str, Dict[Union[str, type], str]]):
inputs = {}
for input_name, input_desc in tool_inputs.items():
input_type = input_desc["type"]
if input_type == "string":
inputs[input_name] = "Text input"
elif input_type == "image":
inputs[input_name] = Image.open(
Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png"
).resize((512, 512))
elif input_type == "audio":
inputs[input_name] = np.ones(3000)
else:
raise ValueError(f"Invalid type requested: {input_type}")
return inputs
def output_type(output):
if isinstance(output, (str, AgentText)):
return "string"
elif isinstance(output, (Image.Image, AgentImage)):
return "image"
elif isinstance(output, (torch.Tensor, AgentAudio)):
return "audio"
else:
raise TypeError(f"Invalid output: {output}")
@is_agent_test
class ToolTesterMixin:
def test_inputs_output(self):
self.assertTrue(hasattr(self.tool, "inputs"))
self.assertTrue(hasattr(self.tool, "output_type"))
inputs = self.tool.inputs
self.assertTrue(isinstance(inputs, dict))
for _, input_spec in inputs.items():
self.assertTrue("type" in input_spec)
self.assertTrue("description" in input_spec)
self.assertTrue(input_spec["type"] in AUTHORIZED_TYPES)
self.assertTrue(isinstance(input_spec["description"], str))
output_type = self.tool.output_type
self.assertTrue(output_type in AUTHORIZED_TYPES)
def test_common_attributes(self):
self.assertTrue(hasattr(self.tool, "description"))
self.assertTrue(hasattr(self.tool, "name"))
self.assertTrue(hasattr(self.tool, "inputs"))
self.assertTrue(hasattr(self.tool, "output_type"))
def test_agent_type_output(self):
inputs = create_inputs(self.tool.inputs)
output = self.tool(**inputs)
if self.tool.output_type != "any":
agent_type = AGENT_TYPE_MAPPING[self.tool.output_type]
self.assertTrue(isinstance(output, agent_type))
def test_agent_types_inputs(self):
inputs = create_inputs(self.tool.inputs)
_inputs = []
for _input, expected_input in zip(inputs, self.tool.inputs.values()):
input_type = expected_input["type"]
_inputs.append(AGENT_TYPE_MAPPING[input_type](_input))
class ToolTests(unittest.TestCase):
def test_tool_init_with_decorator(self):
@tool
def coolfunc(a: str, b: int) -> float:
"""Cool function
Args:
a: The first argument
b: The second one
"""
return b + 2, a
assert coolfunc.output_type == "number"
def test_tool_init_vanilla(self):
class HFModelDownloadsTool(Tool):
name = "model_download_counter"
description = """
This is a tool that returns the most downloaded model of a given task on the Hugging Face Hub.
It returns the name of the checkpoint."""
inputs = {
"task": {
"type": "string",
"description": "the task category (such as text-classification, depth-estimation, etc)",
}
}
output_type = "integer"
def forward(self, task):
return "best model"
tool = HFModelDownloadsTool()
assert list(tool.inputs.keys())[0] == "task"
def test_tool_init_decorator_raises_issues(self):
with pytest.raises(Exception) as e:
@tool
def coolfunc(a: str, b: int):
"""Cool function
Args:
a: The first argument
b: The second one
"""
return a + b
assert coolfunc.output_type == "number"
assert "Tool return type not found" in str(e)
with pytest.raises(Exception) as e:
@tool
def coolfunc(a: str, b: int) -> int:
"""Cool function
Args:
a: The first argument
"""
return b + a
assert coolfunc.output_type == "number"
assert "docstring has no description for the argument" in str(e)