mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00
172 lines
5.5 KiB
Python
172 lines
5.5 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import unittest
|
|
from pathlib import Path
|
|
from typing import Dict, Union
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from transformers import is_torch_available, is_vision_available
|
|
from transformers.agents.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText
|
|
from transformers.agents.tools import Tool, tool
|
|
from transformers.testing_utils import get_tests_dir, is_agent_test
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
|
|
AUTHORIZED_TYPES = ["string", "boolean", "integer", "number", "audio", "image", "any"]
|
|
|
|
|
|
def create_inputs(tool_inputs: Dict[str, Dict[Union[str, type], str]]):
|
|
inputs = {}
|
|
|
|
for input_name, input_desc in tool_inputs.items():
|
|
input_type = input_desc["type"]
|
|
|
|
if input_type == "string":
|
|
inputs[input_name] = "Text input"
|
|
elif input_type == "image":
|
|
inputs[input_name] = Image.open(
|
|
Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png"
|
|
).resize((512, 512))
|
|
elif input_type == "audio":
|
|
inputs[input_name] = np.ones(3000)
|
|
else:
|
|
raise ValueError(f"Invalid type requested: {input_type}")
|
|
|
|
return inputs
|
|
|
|
|
|
def output_type(output):
|
|
if isinstance(output, (str, AgentText)):
|
|
return "string"
|
|
elif isinstance(output, (Image.Image, AgentImage)):
|
|
return "image"
|
|
elif isinstance(output, (torch.Tensor, AgentAudio)):
|
|
return "audio"
|
|
else:
|
|
raise TypeError(f"Invalid output: {output}")
|
|
|
|
|
|
@is_agent_test
|
|
class ToolTesterMixin:
|
|
def test_inputs_output(self):
|
|
self.assertTrue(hasattr(self.tool, "inputs"))
|
|
self.assertTrue(hasattr(self.tool, "output_type"))
|
|
|
|
inputs = self.tool.inputs
|
|
self.assertTrue(isinstance(inputs, dict))
|
|
|
|
for _, input_spec in inputs.items():
|
|
self.assertTrue("type" in input_spec)
|
|
self.assertTrue("description" in input_spec)
|
|
self.assertTrue(input_spec["type"] in AUTHORIZED_TYPES)
|
|
self.assertTrue(isinstance(input_spec["description"], str))
|
|
|
|
output_type = self.tool.output_type
|
|
self.assertTrue(output_type in AUTHORIZED_TYPES)
|
|
|
|
def test_common_attributes(self):
|
|
self.assertTrue(hasattr(self.tool, "description"))
|
|
self.assertTrue(hasattr(self.tool, "name"))
|
|
self.assertTrue(hasattr(self.tool, "inputs"))
|
|
self.assertTrue(hasattr(self.tool, "output_type"))
|
|
|
|
def test_agent_type_output(self):
|
|
inputs = create_inputs(self.tool.inputs)
|
|
output = self.tool(**inputs)
|
|
if self.tool.output_type != "any":
|
|
agent_type = AGENT_TYPE_MAPPING[self.tool.output_type]
|
|
self.assertTrue(isinstance(output, agent_type))
|
|
|
|
def test_agent_types_inputs(self):
|
|
inputs = create_inputs(self.tool.inputs)
|
|
_inputs = []
|
|
for _input, expected_input in zip(inputs, self.tool.inputs.values()):
|
|
input_type = expected_input["type"]
|
|
_inputs.append(AGENT_TYPE_MAPPING[input_type](_input))
|
|
|
|
|
|
class ToolTests(unittest.TestCase):
|
|
def test_tool_init_with_decorator(self):
|
|
@tool
|
|
def coolfunc(a: str, b: int) -> float:
|
|
"""Cool function
|
|
|
|
Args:
|
|
a: The first argument
|
|
b: The second one
|
|
"""
|
|
return b + 2, a
|
|
|
|
assert coolfunc.output_type == "number"
|
|
|
|
def test_tool_init_vanilla(self):
|
|
class HFModelDownloadsTool(Tool):
|
|
name = "model_download_counter"
|
|
description = """
|
|
This is a tool that returns the most downloaded model of a given task on the Hugging Face Hub.
|
|
It returns the name of the checkpoint."""
|
|
|
|
inputs = {
|
|
"task": {
|
|
"type": "string",
|
|
"description": "the task category (such as text-classification, depth-estimation, etc)",
|
|
}
|
|
}
|
|
output_type = "integer"
|
|
|
|
def forward(self, task):
|
|
return "best model"
|
|
|
|
tool = HFModelDownloadsTool()
|
|
assert list(tool.inputs.keys())[0] == "task"
|
|
|
|
def test_tool_init_decorator_raises_issues(self):
|
|
with pytest.raises(Exception) as e:
|
|
|
|
@tool
|
|
def coolfunc(a: str, b: int):
|
|
"""Cool function
|
|
|
|
Args:
|
|
a: The first argument
|
|
b: The second one
|
|
"""
|
|
return a + b
|
|
|
|
assert coolfunc.output_type == "number"
|
|
assert "Tool return type not found" in str(e)
|
|
|
|
with pytest.raises(Exception) as e:
|
|
|
|
@tool
|
|
def coolfunc(a: str, b: int) -> int:
|
|
"""Cool function
|
|
|
|
Args:
|
|
a: The first argument
|
|
"""
|
|
return b + a
|
|
|
|
assert coolfunc.output_type == "number"
|
|
assert "docstring has no description for the argument" in str(e)
|