transformers/pytorch_transformers/tests/tokenization_xlm_test.py

64 lines
2.5 KiB
Python

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function, unicode_literals
import os
import unittest
import json
from pytorch_transformers.tokenization_xlm import XLMTokenizer, VOCAB_FILES_NAMES
from .tokenization_tests_commons import create_and_check_tokenizer_commons, TemporaryDirectory
class XLMTokenizationTest(unittest.TestCase):
def test_full_tokenizer(self):
""" Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt """
vocab = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n",
"w</w>", "r</w>", "t</w>",
"lo", "low", "er</w>",
"low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>"]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["l o 123", "lo w 1456", "e r</w> 1789", ""]
with TemporaryDirectory() as tmpdirname:
vocab_file = os.path.join(tmpdirname, VOCAB_FILES_NAMES['vocab_file'])
merges_file = os.path.join(tmpdirname, VOCAB_FILES_NAMES['merges_file'])
with open(vocab_file, "w") as fp:
fp.write(json.dumps(vocab_tokens))
with open(merges_file, "w") as fp:
fp.write("\n".join(merges))
input_text = u"lower newer"
output_text = u"lower newer"
create_and_check_tokenizer_commons(self, input_text, output_text, XLMTokenizer, tmpdirname)
tokenizer = XLMTokenizer(vocab_file, merges_file)
text = "lower"
bpe_tokens = ["low", "er</w>"]
tokens = tokenizer.tokenize(text)
self.assertListEqual(tokens, bpe_tokens)
input_tokens = tokens + ["<unk>"]
input_bpe_tokens = [14, 15, 20]
self.assertListEqual(
tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
if __name__ == '__main__':
unittest.main()