mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-16 19:18:24 +06:00

* load and save from video-processor folder * Update src/transformers/models/llava_onevision/processing_llava_onevision.py Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> --------- Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
304 lines
12 KiB
Python
304 lines
12 KiB
Python
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import json
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
from transformers.testing_utils import require_torch, require_vision
|
|
from transformers.utils import is_vision_available
|
|
|
|
from ...test_processing_common import ProcessorTesterMixin
|
|
|
|
|
|
if is_vision_available():
|
|
from transformers import (
|
|
AutoProcessor,
|
|
LlavaOnevisionImageProcessor,
|
|
LlavaOnevisionProcessor,
|
|
LlavaOnevisionVideoProcessor,
|
|
Qwen2TokenizerFast,
|
|
)
|
|
|
|
|
|
@require_vision
|
|
class LlavaOnevisionProcessorTest(ProcessorTesterMixin, unittest.TestCase):
|
|
processor_class = LlavaOnevisionProcessor
|
|
|
|
def setUp(self):
|
|
self.tmpdirname = tempfile.mkdtemp()
|
|
image_processor = LlavaOnevisionImageProcessor()
|
|
video_processor = LlavaOnevisionVideoProcessor()
|
|
tokenizer = Qwen2TokenizerFast.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
|
|
processor_kwargs = self.prepare_processor_dict()
|
|
|
|
processor = LlavaOnevisionProcessor(
|
|
video_processor=video_processor, image_processor=image_processor, tokenizer=tokenizer, **processor_kwargs
|
|
)
|
|
processor.save_pretrained(self.tmpdirname)
|
|
|
|
def get_tokenizer(self, **kwargs):
|
|
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer
|
|
|
|
def get_image_processor(self, **kwargs):
|
|
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor
|
|
|
|
def get_video_processor(self, **kwargs):
|
|
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).video_processor
|
|
|
|
def prepare_processor_dict(self):
|
|
return {"chat_template": "dummy_template", "num_image_tokens": 6, "vision_feature_select_strategy": "default"}
|
|
|
|
def test_processor_to_json_string(self):
|
|
processor = self.get_processor()
|
|
obj = json.loads(processor.to_json_string())
|
|
for key, value in self.prepare_processor_dict().items():
|
|
# chat_tempalate are tested as a separate test because they are saved in separate files
|
|
if key != "chat_template":
|
|
self.assertEqual(obj[key], value)
|
|
self.assertEqual(getattr(processor, key, None), value)
|
|
|
|
# Copied from tests.models.llava.test_processor_llava.LlavaProcessorTest.test_chat_template_is_saved
|
|
def test_chat_template_is_saved(self):
|
|
processor_loaded = self.processor_class.from_pretrained(self.tmpdirname)
|
|
processor_dict_loaded = json.loads(processor_loaded.to_json_string())
|
|
# chat templates aren't serialized to json in processors
|
|
self.assertFalse("chat_template" in processor_dict_loaded.keys())
|
|
|
|
# they have to be saved as separate file and loaded back from that file
|
|
# so we check if the same template is loaded
|
|
processor_dict = self.prepare_processor_dict()
|
|
self.assertTrue(processor_loaded.chat_template == processor_dict.get("chat_template", None))
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmpdirname)
|
|
|
|
def test_chat_template(self):
|
|
processor = AutoProcessor.from_pretrained("llava-hf/llava-onevision-qwen2-7b-ov-hf")
|
|
expected_prompt = "<|im_start|>user <image>\nWhat is shown in this image?<|im_end|><|im_start|>assistant\n"
|
|
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "image"},
|
|
{"type": "text", "text": "What is shown in this image?"},
|
|
],
|
|
},
|
|
]
|
|
|
|
formatted_prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
|
self.assertEqual(expected_prompt, formatted_prompt)
|
|
|
|
@require_torch
|
|
@require_vision
|
|
def test_image_processor_defaults_preserved_by_image_kwargs(self):
|
|
# Rewrite as llava-next image processor return pixel values with an added dimesion for image patches
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
image_processor = self.get_component("image_processor", size=(234, 234))
|
|
video_processor = self.get_component("video_processor", size=(234, 234))
|
|
tokenizer = self.get_component("tokenizer", max_length=117)
|
|
|
|
processor = self.processor_class(
|
|
tokenizer=tokenizer, image_processor=image_processor, video_processor=video_processor
|
|
)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
inputs = processor(text=input_str, images=image_input)
|
|
# added dimension for image patches
|
|
self.assertEqual(len(inputs["pixel_values"][0][0][0]), 234)
|
|
|
|
@require_torch
|
|
@require_vision
|
|
def test_kwargs_overrides_default_image_processor_kwargs(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
image_processor = self.get_component("image_processor", crop_size=(234, 234))
|
|
video_processor = self.get_component("video_processor", size=(234, 234))
|
|
tokenizer = self.get_component("tokenizer", max_length=117)
|
|
|
|
processor = self.processor_class(
|
|
tokenizer=tokenizer, image_processor=image_processor, video_processor=video_processor
|
|
)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
inputs = processor(text=input_str, images=image_input, size=[224, 224])
|
|
# added dimension for image patches
|
|
self.assertEqual(len(inputs["pixel_values"][0][0][0]), 224)
|
|
|
|
@require_torch
|
|
@require_vision
|
|
def test_unstructured_kwargs(self):
|
|
image_processor = self.get_component("image_processor")
|
|
video_processor = self.get_component("video_processor")
|
|
tokenizer = self.get_component("tokenizer")
|
|
processor = self.processor_class(
|
|
tokenizer=tokenizer, image_processor=image_processor, video_processor=video_processor
|
|
)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
inputs = processor(
|
|
text=input_str,
|
|
images=image_input,
|
|
return_tensors="pt",
|
|
size={"height": 214, "width": 214},
|
|
padding="max_length",
|
|
max_length=76,
|
|
)
|
|
|
|
# added dimension for image patches
|
|
self.assertEqual(inputs["pixel_values"].shape[3], 214)
|
|
self.assertEqual(len(inputs["input_ids"][0]), 76)
|
|
|
|
@require_torch
|
|
@require_vision
|
|
def test_unstructured_kwargs_batched(self):
|
|
image_processor = self.get_component("image_processor")
|
|
video_processor = self.get_component("video_processor")
|
|
tokenizer = self.get_component("tokenizer")
|
|
processor = self.processor_class(
|
|
tokenizer=tokenizer, image_processor=image_processor, video_processor=video_processor
|
|
)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
|
|
input_str = ["lower newer", "upper older longer string"]
|
|
image_input = self.prepare_image_inputs() * 2
|
|
inputs = processor(
|
|
text=input_str,
|
|
images=image_input,
|
|
return_tensors="pt",
|
|
size={"height": 214, "width": 214},
|
|
padding="longest",
|
|
max_length=76,
|
|
)
|
|
self.assertEqual(inputs["pixel_values"].shape[3], 214)
|
|
self.assertEqual(len(inputs["input_ids"][0]), 4)
|
|
|
|
@require_torch
|
|
@require_vision
|
|
def test_structured_kwargs_nested(self):
|
|
image_processor = self.get_component("image_processor")
|
|
video_processor = self.get_component("video_processor")
|
|
tokenizer = self.get_component("tokenizer")
|
|
processor = self.processor_class(
|
|
tokenizer=tokenizer, image_processor=image_processor, video_processor=video_processor
|
|
)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
# Define the kwargs for each modality
|
|
all_kwargs = {
|
|
"common_kwargs": {"return_tensors": "pt"},
|
|
"images_kwargs": {"size": {"height": 214, "width": 214}},
|
|
"text_kwargs": {"padding": "max_length", "max_length": 76},
|
|
}
|
|
|
|
inputs = processor(text=input_str, images=image_input, **all_kwargs)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
|
|
self.assertEqual(inputs["pixel_values"].shape[3], 214)
|
|
self.assertEqual(len(inputs["input_ids"][0]), 76)
|
|
|
|
@require_torch
|
|
@require_vision
|
|
def test_structured_kwargs_nested_from_dict(self):
|
|
image_processor = self.get_component("image_processor")
|
|
video_processor = self.get_component("video_processor")
|
|
tokenizer = self.get_component("tokenizer")
|
|
|
|
processor = self.processor_class(
|
|
tokenizer=tokenizer, image_processor=image_processor, video_processor=video_processor
|
|
)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
# Define the kwargs for each modality
|
|
all_kwargs = {
|
|
"common_kwargs": {"return_tensors": "pt"},
|
|
"images_kwargs": {"size": {"height": 214, "width": 214}},
|
|
"text_kwargs": {"padding": "max_length", "max_length": 76},
|
|
}
|
|
|
|
inputs = processor(text=input_str, images=image_input, **all_kwargs)
|
|
self.assertEqual(inputs["pixel_values"].shape[3], 214)
|
|
self.assertEqual(len(inputs["input_ids"][0]), 76)
|
|
|
|
@require_torch
|
|
@require_vision
|
|
def test_doubly_passed_kwargs(self):
|
|
image_processor = self.get_component("image_processor")
|
|
video_processor = self.get_component("video_processor")
|
|
tokenizer = self.get_component("tokenizer")
|
|
|
|
processor = self.processor_class(
|
|
tokenizer=tokenizer, image_processor=image_processor, video_processor=video_processor
|
|
)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
|
|
input_str = ["lower newer"]
|
|
image_input = self.prepare_image_inputs()
|
|
with self.assertRaises(ValueError):
|
|
_ = processor(
|
|
text=input_str,
|
|
images=image_input,
|
|
images_kwargs={"size": {"height": 222, "width": 222}},
|
|
size={"height": 214, "width": 214},
|
|
)
|
|
|
|
@require_vision
|
|
@require_torch
|
|
def test_kwargs_overrides_default_tokenizer_kwargs(self):
|
|
image_processor = self.get_component("image_processor")
|
|
video_processor = self.get_component("video_processor")
|
|
tokenizer = self.get_component("tokenizer", max_length=117)
|
|
|
|
processor = self.processor_class(
|
|
tokenizer=tokenizer, image_processor=image_processor, video_processor=video_processor
|
|
)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
inputs = processor(text=input_str, images=image_input, return_tensors="pt", max_length=112)
|
|
self.assertEqual(len(inputs["input_ids"][0]), 2)
|
|
|
|
@require_vision
|
|
@require_torch
|
|
def test_tokenizer_defaults_preserved_by_kwargs(self):
|
|
image_processor = self.get_component("image_processor")
|
|
video_processor = self.get_component("video_processor")
|
|
tokenizer = self.get_component("tokenizer", max_length=117)
|
|
|
|
processor = self.processor_class(
|
|
tokenizer=tokenizer, image_processor=image_processor, video_processor=video_processor
|
|
)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
inputs = processor(text=input_str, images=image_input, return_tensors="pt")
|
|
self.assertEqual(len(inputs["input_ids"][0]), 2)
|