transformers/tests/models/llava_onevision/test_processing_llava_onevision.py
Raushan Turganbay e40bb4845e
Load and save video-processor from separate folder (#33562)
* load and save from video-processor folder

* Update src/transformers/models/llava_onevision/processing_llava_onevision.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-09-19 09:56:52 +02:00

304 lines
12 KiB
Python

# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import shutil
import tempfile
import unittest
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_vision_available
from ...test_processing_common import ProcessorTesterMixin
if is_vision_available():
from transformers import (
AutoProcessor,
LlavaOnevisionImageProcessor,
LlavaOnevisionProcessor,
LlavaOnevisionVideoProcessor,
Qwen2TokenizerFast,
)
@require_vision
class LlavaOnevisionProcessorTest(ProcessorTesterMixin, unittest.TestCase):
processor_class = LlavaOnevisionProcessor
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
image_processor = LlavaOnevisionImageProcessor()
video_processor = LlavaOnevisionVideoProcessor()
tokenizer = Qwen2TokenizerFast.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
processor_kwargs = self.prepare_processor_dict()
processor = LlavaOnevisionProcessor(
video_processor=video_processor, image_processor=image_processor, tokenizer=tokenizer, **processor_kwargs
)
processor.save_pretrained(self.tmpdirname)
def get_tokenizer(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer
def get_image_processor(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor
def get_video_processor(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).video_processor
def prepare_processor_dict(self):
return {"chat_template": "dummy_template", "num_image_tokens": 6, "vision_feature_select_strategy": "default"}
def test_processor_to_json_string(self):
processor = self.get_processor()
obj = json.loads(processor.to_json_string())
for key, value in self.prepare_processor_dict().items():
# chat_tempalate are tested as a separate test because they are saved in separate files
if key != "chat_template":
self.assertEqual(obj[key], value)
self.assertEqual(getattr(processor, key, None), value)
# Copied from tests.models.llava.test_processor_llava.LlavaProcessorTest.test_chat_template_is_saved
def test_chat_template_is_saved(self):
processor_loaded = self.processor_class.from_pretrained(self.tmpdirname)
processor_dict_loaded = json.loads(processor_loaded.to_json_string())
# chat templates aren't serialized to json in processors
self.assertFalse("chat_template" in processor_dict_loaded.keys())
# they have to be saved as separate file and loaded back from that file
# so we check if the same template is loaded
processor_dict = self.prepare_processor_dict()
self.assertTrue(processor_loaded.chat_template == processor_dict.get("chat_template", None))
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def test_chat_template(self):
processor = AutoProcessor.from_pretrained("llava-hf/llava-onevision-qwen2-7b-ov-hf")
expected_prompt = "<|im_start|>user <image>\nWhat is shown in this image?<|im_end|><|im_start|>assistant\n"
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
]
formatted_prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
self.assertEqual(expected_prompt, formatted_prompt)
@require_torch
@require_vision
def test_image_processor_defaults_preserved_by_image_kwargs(self):
# Rewrite as llava-next image processor return pixel values with an added dimesion for image patches
if "image_processor" not in self.processor_class.attributes:
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
image_processor = self.get_component("image_processor", size=(234, 234))
video_processor = self.get_component("video_processor", size=(234, 234))
tokenizer = self.get_component("tokenizer", max_length=117)
processor = self.processor_class(
tokenizer=tokenizer, image_processor=image_processor, video_processor=video_processor
)
self.skip_processor_without_typed_kwargs(processor)
input_str = "lower newer"
image_input = self.prepare_image_inputs()
inputs = processor(text=input_str, images=image_input)
# added dimension for image patches
self.assertEqual(len(inputs["pixel_values"][0][0][0]), 234)
@require_torch
@require_vision
def test_kwargs_overrides_default_image_processor_kwargs(self):
if "image_processor" not in self.processor_class.attributes:
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
image_processor = self.get_component("image_processor", crop_size=(234, 234))
video_processor = self.get_component("video_processor", size=(234, 234))
tokenizer = self.get_component("tokenizer", max_length=117)
processor = self.processor_class(
tokenizer=tokenizer, image_processor=image_processor, video_processor=video_processor
)
self.skip_processor_without_typed_kwargs(processor)
input_str = "lower newer"
image_input = self.prepare_image_inputs()
inputs = processor(text=input_str, images=image_input, size=[224, 224])
# added dimension for image patches
self.assertEqual(len(inputs["pixel_values"][0][0][0]), 224)
@require_torch
@require_vision
def test_unstructured_kwargs(self):
image_processor = self.get_component("image_processor")
video_processor = self.get_component("video_processor")
tokenizer = self.get_component("tokenizer")
processor = self.processor_class(
tokenizer=tokenizer, image_processor=image_processor, video_processor=video_processor
)
self.skip_processor_without_typed_kwargs(processor)
input_str = "lower newer"
image_input = self.prepare_image_inputs()
inputs = processor(
text=input_str,
images=image_input,
return_tensors="pt",
size={"height": 214, "width": 214},
padding="max_length",
max_length=76,
)
# added dimension for image patches
self.assertEqual(inputs["pixel_values"].shape[3], 214)
self.assertEqual(len(inputs["input_ids"][0]), 76)
@require_torch
@require_vision
def test_unstructured_kwargs_batched(self):
image_processor = self.get_component("image_processor")
video_processor = self.get_component("video_processor")
tokenizer = self.get_component("tokenizer")
processor = self.processor_class(
tokenizer=tokenizer, image_processor=image_processor, video_processor=video_processor
)
self.skip_processor_without_typed_kwargs(processor)
input_str = ["lower newer", "upper older longer string"]
image_input = self.prepare_image_inputs() * 2
inputs = processor(
text=input_str,
images=image_input,
return_tensors="pt",
size={"height": 214, "width": 214},
padding="longest",
max_length=76,
)
self.assertEqual(inputs["pixel_values"].shape[3], 214)
self.assertEqual(len(inputs["input_ids"][0]), 4)
@require_torch
@require_vision
def test_structured_kwargs_nested(self):
image_processor = self.get_component("image_processor")
video_processor = self.get_component("video_processor")
tokenizer = self.get_component("tokenizer")
processor = self.processor_class(
tokenizer=tokenizer, image_processor=image_processor, video_processor=video_processor
)
self.skip_processor_without_typed_kwargs(processor)
input_str = "lower newer"
image_input = self.prepare_image_inputs()
# Define the kwargs for each modality
all_kwargs = {
"common_kwargs": {"return_tensors": "pt"},
"images_kwargs": {"size": {"height": 214, "width": 214}},
"text_kwargs": {"padding": "max_length", "max_length": 76},
}
inputs = processor(text=input_str, images=image_input, **all_kwargs)
self.skip_processor_without_typed_kwargs(processor)
self.assertEqual(inputs["pixel_values"].shape[3], 214)
self.assertEqual(len(inputs["input_ids"][0]), 76)
@require_torch
@require_vision
def test_structured_kwargs_nested_from_dict(self):
image_processor = self.get_component("image_processor")
video_processor = self.get_component("video_processor")
tokenizer = self.get_component("tokenizer")
processor = self.processor_class(
tokenizer=tokenizer, image_processor=image_processor, video_processor=video_processor
)
self.skip_processor_without_typed_kwargs(processor)
input_str = "lower newer"
image_input = self.prepare_image_inputs()
# Define the kwargs for each modality
all_kwargs = {
"common_kwargs": {"return_tensors": "pt"},
"images_kwargs": {"size": {"height": 214, "width": 214}},
"text_kwargs": {"padding": "max_length", "max_length": 76},
}
inputs = processor(text=input_str, images=image_input, **all_kwargs)
self.assertEqual(inputs["pixel_values"].shape[3], 214)
self.assertEqual(len(inputs["input_ids"][0]), 76)
@require_torch
@require_vision
def test_doubly_passed_kwargs(self):
image_processor = self.get_component("image_processor")
video_processor = self.get_component("video_processor")
tokenizer = self.get_component("tokenizer")
processor = self.processor_class(
tokenizer=tokenizer, image_processor=image_processor, video_processor=video_processor
)
self.skip_processor_without_typed_kwargs(processor)
input_str = ["lower newer"]
image_input = self.prepare_image_inputs()
with self.assertRaises(ValueError):
_ = processor(
text=input_str,
images=image_input,
images_kwargs={"size": {"height": 222, "width": 222}},
size={"height": 214, "width": 214},
)
@require_vision
@require_torch
def test_kwargs_overrides_default_tokenizer_kwargs(self):
image_processor = self.get_component("image_processor")
video_processor = self.get_component("video_processor")
tokenizer = self.get_component("tokenizer", max_length=117)
processor = self.processor_class(
tokenizer=tokenizer, image_processor=image_processor, video_processor=video_processor
)
self.skip_processor_without_typed_kwargs(processor)
input_str = "lower newer"
image_input = self.prepare_image_inputs()
inputs = processor(text=input_str, images=image_input, return_tensors="pt", max_length=112)
self.assertEqual(len(inputs["input_ids"][0]), 2)
@require_vision
@require_torch
def test_tokenizer_defaults_preserved_by_kwargs(self):
image_processor = self.get_component("image_processor")
video_processor = self.get_component("video_processor")
tokenizer = self.get_component("tokenizer", max_length=117)
processor = self.processor_class(
tokenizer=tokenizer, image_processor=image_processor, video_processor=video_processor
)
self.skip_processor_without_typed_kwargs(processor)
input_str = "lower newer"
image_input = self.prepare_image_inputs()
inputs = processor(text=input_str, images=image_input, return_tensors="pt")
self.assertEqual(len(inputs["input_ids"][0]), 2)