transformers/tests/models/timm_wrapper/test_modeling_timm_wrapper.py
BUI Van Tuan e355c0a11c
Fix missing initializations for models created in 2024 (#38987)
* fix GroundingDino

* fix SuperGlue

* fix GroundingDino

* fix MambaModel

* fix OmDetTurbo

* fix SegGpt

* fix Qwen2Audio

* fix Mamba2

* fix DabDetr

* fix Dac

* fix FalconMamba

* skip timm initialization

* fix Encodec and MusicgenMelody

* fix Musicgen

* skip timm initialization test

* fix OmDetTurbo

* clean the code

Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>

* add reviewed changes

* add back timm

* style

* better check for parametrizations

---------

Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-07-02 15:03:57 +02:00

443 lines
17 KiB
Python

# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import tempfile
import unittest
from transformers import pipeline
from transformers.testing_utils import (
require_bitsandbytes,
require_timm,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils.import_utils import is_timm_available, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import TimmWrapperConfig, TimmWrapperForImageClassification, TimmWrapperModel
if is_timm_available():
import timm
if is_vision_available():
from PIL import Image
from transformers import TimmWrapperImageProcessor
class TimmWrapperModelTester:
def __init__(
self,
parent,
model_name="timm/resnet18.a1_in1k",
batch_size=3,
image_size=32,
num_channels=3,
is_training=True,
):
self.parent = parent
self.model_name = model_name
self.batch_size = batch_size
self.image_size = image_size
self.num_channels = num_channels
self.is_training = is_training
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
config = self.get_config()
return config, pixel_values
def get_config(self):
return TimmWrapperConfig.from_pretrained(self.model_name)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
@require_timm
class TimmWrapperModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (TimmWrapperModel, TimmWrapperForImageClassification) if is_torch_available() else ()
pipeline_model_mapping = (
{"image-feature-extraction": TimmWrapperModel, "image-classification": TimmWrapperForImageClassification}
if is_torch_available()
else {}
)
test_resize_embeddings = False
test_head_masking = False
test_pruning = False
has_attentions = False
test_model_parallel = False
def setUp(self):
self.config_class = TimmWrapperConfig
self.model_tester = TimmWrapperModelTester(self)
self.config_tester = ConfigTester(
self,
config_class=self.config_class,
has_text_modality=False,
common_properties=[],
model_name="timm/resnet18.a1_in1k",
)
def test_config(self):
self.config_tester.run_common_tests()
def test_hidden_states_output(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
# check all hidden states
with torch.no_grad():
outputs = model(**inputs_dict, output_hidden_states=True)
self.assertTrue(
len(outputs.hidden_states) == 5, f"expected 5 hidden states, but got {len(outputs.hidden_states)}"
)
expected_shapes = [[16, 16], [8, 8], [4, 4], [2, 2], [1, 1]]
resulted_shapes = [list(h.shape[2:]) for h in outputs.hidden_states]
self.assertListEqual(expected_shapes, resulted_shapes)
# check we can select hidden states by indices
with torch.no_grad():
outputs = model(**inputs_dict, output_hidden_states=[-2, -1])
self.assertTrue(
len(outputs.hidden_states) == 2, f"expected 2 hidden states, but got {len(outputs.hidden_states)}"
)
expected_shapes = [[2, 2], [1, 1]]
resulted_shapes = [list(h.shape[2:]) for h in outputs.hidden_states]
self.assertListEqual(expected_shapes, resulted_shapes)
@unittest.skip(reason="TimmWrapper models doesn't have inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="TimmWrapper models doesn't have inputs_embeds")
def test_model_get_set_embeddings(self):
pass
@unittest.skip(reason="TimmWrapper doesn't support output_attentions=True.")
def test_torchscript_output_attentions(self):
pass
@unittest.skip(reason="TimmWrapper doesn't support this.")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="TimmWrapper initialization is managed on the timm side")
def test_can_init_all_missing_weights(self):
pass
@unittest.skip(reason="TimmWrapper initialization is managed on the timm side")
def test_initialization(self):
pass
@unittest.skip(reason="TimmWrapper initialization is managed on the timm side")
def test_mismatched_shapes_have_properly_initialized_weights(self):
pass
@unittest.skip(reason="Need to use a timm model and there is no tiny model available.")
def test_model_is_small(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_do_pooling_option(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.do_pooling = False
model = TimmWrapperModel._from_config(config)
# check there is no pooling
with torch.no_grad():
output = model(**inputs_dict)
self.assertIsNone(output.pooler_output)
# check there is pooler output
with torch.no_grad():
output = model(**inputs_dict, do_pooling=True)
self.assertIsNotNone(output.pooler_output)
def test_timm_config_labels(self):
# test timm config with no labels
checkpoint = "timm/resnet18.a1_in1k"
config = TimmWrapperConfig.from_pretrained(checkpoint)
self.assertIsNone(config.label2id)
self.assertIsInstance(config.id2label, dict)
self.assertEqual(len(config.id2label), 1000)
self.assertEqual(config.id2label[1], "goldfish, Carassius auratus")
# test timm config with labels in config
checkpoint = "timm/eva02_large_patch14_clip_336.merged2b_ft_inat21"
config = TimmWrapperConfig.from_pretrained(checkpoint)
self.assertIsInstance(config.id2label, dict)
self.assertEqual(len(config.id2label), 10000)
self.assertEqual(config.id2label[1], "Sabella spallanzanii")
self.assertIsInstance(config.label2id, dict)
self.assertEqual(len(config.label2id), 10000)
self.assertEqual(config.label2id["Sabella spallanzanii"], 1)
# test custom labels are provided
checkpoint = "timm/resnet18.a1_in1k"
config = TimmWrapperConfig.from_pretrained(checkpoint, num_labels=2)
self.assertEqual(config.num_labels, 2)
self.assertEqual(config.id2label, {0: "LABEL_0", 1: "LABEL_1"})
self.assertEqual(config.label2id, {"LABEL_0": 0, "LABEL_1": 1})
# test with provided id2label and label2id
checkpoint = "timm/resnet18.a1_in1k"
config = TimmWrapperConfig.from_pretrained(
checkpoint, num_labels=2, id2label={0: "LABEL_0", 1: "LABEL_1"}, label2id={"LABEL_0": 0, "LABEL_1": 1}
)
self.assertEqual(config.num_labels, 2)
self.assertEqual(config.id2label, {0: "LABEL_0", 1: "LABEL_1"})
self.assertEqual(config.label2id, {"LABEL_0": 0, "LABEL_1": 1})
# test save load
checkpoint = "timm/resnet18.a1_in1k"
config = TimmWrapperConfig.from_pretrained(checkpoint)
with tempfile.TemporaryDirectory() as tmpdirname:
config.save_pretrained(tmpdirname)
restored_config = TimmWrapperConfig.from_pretrained(tmpdirname)
self.assertEqual(config.num_labels, restored_config.num_labels)
self.assertEqual(config.id2label, restored_config.id2label)
self.assertEqual(config.label2id, restored_config.label2id)
def test_model_init_args(self):
# test init from config
config = TimmWrapperConfig.from_pretrained(
"timm/vit_base_patch32_clip_448.laion2b_ft_in12k_in1k",
model_args={"depth": 3},
)
model = TimmWrapperModel(config)
self.assertEqual(len(model.timm_model.blocks), 3)
cls_model = TimmWrapperForImageClassification(config)
self.assertEqual(len(cls_model.timm_model.blocks), 3)
# test save load
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
restored_model = TimmWrapperModel.from_pretrained(tmpdirname)
self.assertEqual(len(restored_model.timm_model.blocks), 3)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_timm
@require_vision
class TimmWrapperModelIntegrationTest(unittest.TestCase):
# some popular ones
model_names_to_test = [
"vit_small_patch16_384.augreg_in21k_ft_in1k",
"resnet50.a1_in1k",
"tf_mobilenetv3_large_minimal_100.in1k",
"swin_tiny_patch4_window7_224.ms_in1k",
"ese_vovnet19b_dw.ra_in1k",
"hrnet_w18.ms_aug_in1k",
]
@slow
def test_inference_image_classification_head(self):
checkpoint = "timm/resnet18.a1_in1k"
model = TimmWrapperForImageClassification.from_pretrained(checkpoint, device_map=torch_device).eval()
image_processor = TimmWrapperImageProcessor.from_pretrained(checkpoint)
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the shape and logits
expected_shape = torch.Size((1, 1000))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_label = 281 # tabby cat
self.assertEqual(torch.argmax(outputs.logits).item(), expected_label)
expected_slice = torch.tensor([-11.2618, -9.6192, -10.3205]).to(torch_device)
resulted_slice = outputs.logits[0, :3]
is_close = torch.allclose(resulted_slice, expected_slice, atol=1e-3)
self.assertTrue(is_close, f"Expected {expected_slice}, but got {resulted_slice}")
@slow
def test_inference_with_pipeline(self):
image = prepare_img()
classifier = pipeline(model="timm/resnet18.a1_in1k", device=torch_device)
result = classifier(image)
# verify result
expected_label = "tabby, tabby cat"
expected_score = 0.4329
self.assertEqual(result[0]["label"], expected_label)
self.assertAlmostEqual(result[0]["score"], expected_score, places=3)
@slow
@require_bitsandbytes
def test_inference_image_classification_quantized(self):
from transformers import BitsAndBytesConfig
checkpoint = "timm/vit_small_patch16_384.augreg_in21k_ft_in1k"
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
model = TimmWrapperForImageClassification.from_pretrained(
checkpoint, quantization_config=quantization_config, device_map=torch_device
).eval()
image_processor = TimmWrapperImageProcessor.from_pretrained(checkpoint)
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the shape and logits
expected_shape = torch.Size((1, 1000))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_label = 281 # tabby cat
self.assertEqual(torch.argmax(outputs.logits).item(), expected_label)
expected_slice = torch.tensor([-2.4043, 1.4492, -0.5127]).to(outputs.logits.dtype)
resulted_slice = outputs.logits[0, :3].cpu()
is_close = torch.allclose(resulted_slice, expected_slice, atol=0.1)
self.assertTrue(is_close, f"Expected {expected_slice}, but got {resulted_slice}")
@slow
def test_transformers_model_for_classification_is_equivalent_to_timm(self):
# check that wrapper logits are the same as timm model logits
image = prepare_img()
for model_name in self.model_names_to_test:
checkpoint = f"timm/{model_name}"
with self.subTest(msg=model_name):
# prepare inputs
image_processor = TimmWrapperImageProcessor.from_pretrained(checkpoint)
pixel_values = image_processor(images=image).pixel_values.to(torch_device)
# load models
model = TimmWrapperForImageClassification.from_pretrained(checkpoint, device_map=torch_device).eval()
timm_model = timm.create_model(model_name, pretrained=True).to(torch_device).eval()
with torch.inference_mode():
outputs = model(pixel_values)
timm_outputs = timm_model(pixel_values)
# check shape is the same
self.assertEqual(outputs.logits.shape, timm_outputs.shape)
# check logits are the same
diff = (outputs.logits - timm_outputs).max().item()
self.assertLess(diff, 1e-4)
@slow
def test_transformers_model_is_equivalent_to_timm(self):
# check that wrapper logits are the same as timm model logits
image = prepare_img()
models_to_test = ["vit_small_patch16_224.dino"] + self.model_names_to_test
for model_name in models_to_test:
checkpoint = f"timm/{model_name}"
with self.subTest(msg=model_name):
# prepare inputs
image_processor = TimmWrapperImageProcessor.from_pretrained(checkpoint)
pixel_values = image_processor(images=image).pixel_values.to(torch_device)
# load models
model = TimmWrapperModel.from_pretrained(checkpoint, device_map=torch_device).eval()
timm_model = timm.create_model(model_name, pretrained=True, num_classes=0).to(torch_device).eval()
with torch.inference_mode():
outputs = model(pixel_values)
timm_outputs = timm_model(pixel_values)
# check shape is the same
self.assertEqual(outputs.pooler_output.shape, timm_outputs.shape)
# check logits are the same
diff = (outputs.pooler_output - timm_outputs).max().item()
self.assertLess(diff, 1e-4)
@slow
def test_save_load_to_timm(self):
# test that timm model can be loaded to transformers, saved and then loaded back into timm
model = TimmWrapperForImageClassification.from_pretrained(
"timm/resnet18.a1_in1k", num_labels=10, ignore_mismatched_sizes=True
)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
# there is no direct way to load timm model from folder, use the same config + path to weights
timm_model = timm.create_model(
"resnet18", num_classes=10, checkpoint_path=f"{tmpdirname}/model.safetensors"
)
# check that all weights are the same after reload
different_weights = []
for (name1, param1), (name2, param2) in zip(
model.timm_model.named_parameters(), timm_model.named_parameters()
):
if param1.shape != param2.shape or not torch.equal(param1, param2):
different_weights.append((name1, name2))
if different_weights:
self.fail(f"Found different weights after reloading: {different_weights}")