mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-21 05:28:21 +06:00

* Supporting seq2seq models for `bitsandbytes` integration - `bitsandbytes` integration supports now seq2seq models - check if a model has tied weights as an additional check * small modification - tie the weights before looking at tied weights!
234 lines
8.9 KiB
Python
234 lines
8.9 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 The HuggingFace Team Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a clone of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import gc
|
|
import unittest
|
|
|
|
from transformers import (
|
|
AutoModel,
|
|
AutoModelForCausalLM,
|
|
AutoModelForSeq2SeqLM,
|
|
AutoModelForSequenceClassification,
|
|
AutoTokenizer,
|
|
pipeline,
|
|
)
|
|
from transformers.testing_utils import (
|
|
is_torch_available,
|
|
require_accelerate,
|
|
require_bitsandbytes,
|
|
require_torch,
|
|
require_torch_gpu,
|
|
require_torch_multi_gpu,
|
|
slow,
|
|
)
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
|
|
@require_bitsandbytes
|
|
@require_accelerate
|
|
@require_torch
|
|
@require_torch_gpu
|
|
@slow
|
|
class BaseMixedInt8Test(unittest.TestCase):
|
|
# We keep the constants inside the init function and model loading inside setUp function
|
|
|
|
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
|
|
# Therefore here we use only bloom-1b3 to test our module
|
|
model_name = "bigscience/bloom-1b7"
|
|
|
|
# Constant values
|
|
EXPECTED_RELATIVE_DIFFERENCE = (
|
|
1.540025 # This was obtained on a Quadro RTX 8000 so the number might slightly change
|
|
)
|
|
|
|
input_text = "Hello my name is"
|
|
EXPECTED_OUTPUT = "Hello my name is John.\nI am a friend of the family.\n"
|
|
MAX_NEW_TOKENS = 10
|
|
|
|
def setUp(self):
|
|
# Models and tokenizer
|
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
|
|
|
|
|
class MixedInt8Test(BaseMixedInt8Test):
|
|
def setUp(self):
|
|
super().setUp()
|
|
|
|
# Models and tokenizer
|
|
self.model_fp16 = AutoModelForCausalLM.from_pretrained(self.model_name, torch_dtype="auto", device_map="auto")
|
|
self.model_8bit = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto")
|
|
|
|
def tearDown(self):
|
|
r"""
|
|
TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to
|
|
avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27
|
|
"""
|
|
del self.model_fp16
|
|
del self.model_8bit
|
|
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
def test_memory_footprint(self):
|
|
r"""
|
|
A simple test to check if the model conversion has been done correctly by checking on the
|
|
memory footprint of the converted model and the class type of the linear layers of the converted models
|
|
"""
|
|
from bitsandbytes.nn import Int8Params
|
|
|
|
mem_fp16 = self.model_fp16.get_memory_footprint()
|
|
mem_8bit = self.model_8bit.get_memory_footprint()
|
|
|
|
self.assertAlmostEqual(mem_fp16 / mem_8bit, self.EXPECTED_RELATIVE_DIFFERENCE)
|
|
self.assertTrue(self.model_8bit.transformer.h[0].mlp.dense_4h_to_h.weight.__class__ == Int8Params)
|
|
|
|
def test_generate_quality(self):
|
|
r"""
|
|
Test the generation quality of the quantized model and see that we are matching the expected output.
|
|
Given that we are operating on small numbers + the testing model is relatively small, we might not get
|
|
the same output across GPUs. So we'll generate few tokens (5-10) and check their output.
|
|
"""
|
|
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
|
|
output_sequences = self.model_8bit.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)
|
|
|
|
self.assertEqual(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
|
|
|
|
|
|
class MixedInt8ModelClassesTest(BaseMixedInt8Test):
|
|
def setUp(self):
|
|
super().setUp()
|
|
# model_name
|
|
self.model_name = "bigscience/bloom-560m"
|
|
self.seq_to_seq_name = "t5-small"
|
|
|
|
# Different types of model
|
|
|
|
self.base_model = AutoModel.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto")
|
|
# Sequence classification model
|
|
self.sequence_model = AutoModelForSequenceClassification.from_pretrained(
|
|
self.model_name, load_in_8bit=True, device_map="auto"
|
|
)
|
|
# CausalLM model
|
|
self.model_8bit = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto")
|
|
# Seq2seq model
|
|
self.seq_to_seq_model = AutoModelForSeq2SeqLM.from_pretrained(
|
|
self.seq_to_seq_name, load_in_8bit=True, device_map="auto"
|
|
)
|
|
|
|
def tearDown(self):
|
|
r"""
|
|
TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to
|
|
avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27
|
|
"""
|
|
del self.base_model
|
|
del self.sequence_model
|
|
del self.model_8bit
|
|
del self.seq_to_seq_model
|
|
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
def test_correct_head_class(self):
|
|
r"""
|
|
A simple test to check if the last modules for some classes (AutoModelForCausalLM or SequenceClassification)
|
|
are kept in their native class.
|
|
"""
|
|
from bitsandbytes.nn import Int8Params
|
|
|
|
# last param of a base model should be a linear8bit module
|
|
self.assertTrue(self.base_model.h[-1].mlp.dense_4h_to_h.weight.__class__ == Int8Params)
|
|
|
|
# Other heads should be nn.Parameter
|
|
self.assertTrue(self.model_8bit.lm_head.weight.__class__ == torch.nn.Parameter)
|
|
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter)
|
|
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter)
|
|
|
|
|
|
class MixedInt8TestPipeline(BaseMixedInt8Test):
|
|
def setUp(self):
|
|
super().setUp()
|
|
|
|
def tearDown(self):
|
|
r"""
|
|
TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to
|
|
avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27
|
|
"""
|
|
del self.pipe
|
|
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
def test_pipeline(self):
|
|
r"""
|
|
The aim of this test is to verify that the mixed int8 is compatible with `pipeline` from transformers. Since
|
|
we used pipline for inference speed benchmarking we want to make sure that this feature does not break anything
|
|
on pipline.
|
|
"""
|
|
# self._clear_cuda_cache()
|
|
self.pipe = pipeline(
|
|
"text-generation",
|
|
model=self.model_name,
|
|
model_kwargs={"device_map": "auto", "load_in_8bit": True},
|
|
max_new_tokens=self.MAX_NEW_TOKENS,
|
|
)
|
|
|
|
# Real second forward pass
|
|
pipeline_output = self.pipe(self.input_text)
|
|
self.assertEqual(pipeline_output[0]["generated_text"], self.EXPECTED_OUTPUT)
|
|
|
|
|
|
@require_torch_multi_gpu
|
|
class MixedInt8TestMultiGpu(BaseMixedInt8Test):
|
|
def setUp(self):
|
|
super().setUp()
|
|
|
|
def test_multi_gpu_loading(self):
|
|
r"""
|
|
This tests that the model has been loaded and can be used correctly on a multi-GPU setup.
|
|
Let's just try to load a model on 2 GPUs and see if it works. The model we test has ~2GB of total, 3GB should suffice
|
|
"""
|
|
|
|
memory_mapping = {0: "1GB", 1: "2GB"}
|
|
model_parallel = AutoModelForCausalLM.from_pretrained(
|
|
self.model_name, load_in_8bit=True, max_memory=memory_mapping, device_map="auto"
|
|
)
|
|
|
|
def get_list_devices(model):
|
|
list_devices = []
|
|
for _, module in model.named_children():
|
|
if len(list(module.children())) > 0:
|
|
list_devices.extend(get_list_devices(module))
|
|
else:
|
|
# Do a try except since we can encounter Dropout modules that does not
|
|
# have any device set
|
|
try:
|
|
list_devices.append(next(module.parameters()).device.index)
|
|
except BaseException:
|
|
continue
|
|
return list_devices
|
|
|
|
list_devices = get_list_devices(model_parallel)
|
|
# Check that we have dispatched the model into 2 separate devices
|
|
self.assertTrue((1 in list_devices) and (0 in list_devices))
|
|
|
|
# Check that inference pass works on the model
|
|
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
|
|
|
|
# Second real batch
|
|
output_parallel = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)
|
|
self.assertEqual(self.tokenizer.decode(output_parallel[0], skip_special_tokens=True), self.EXPECTED_OUTPUT)
|