mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-16 19:18:24 +06:00
286 lines
12 KiB
Python
286 lines
12 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Google AI Language Team Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import shutil
|
|
import pytest
|
|
|
|
from pytorch_transformers import (XLMConfig, XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification)
|
|
from pytorch_transformers.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_MAP
|
|
|
|
from .modeling_common_test import (CommonTestCases, ConfigTester, ids_tensor)
|
|
|
|
|
|
class XLMModelTest(CommonTestCases.CommonModelTester):
|
|
|
|
all_model_classes = (XLMModel, XLMWithLMHeadModel,
|
|
XLMForQuestionAnswering, XLMForSequenceClassification)
|
|
# , XLMForSequenceClassification, XLMForTokenClassification),
|
|
|
|
class XLMModelTester(object):
|
|
|
|
def __init__(self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_input_lengths=True,
|
|
use_token_type_ids=True,
|
|
use_labels=True,
|
|
gelu_activation=True,
|
|
sinusoidal_embeddings=False,
|
|
causal=False,
|
|
asm=False,
|
|
n_langs=2,
|
|
vocab_size=99,
|
|
n_special=0,
|
|
hidden_size=32,
|
|
num_hidden_layers=5,
|
|
num_attention_heads=4,
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=512,
|
|
type_vocab_size=16,
|
|
type_sequence_label_size=2,
|
|
initializer_range=0.02,
|
|
num_labels=3,
|
|
num_choices=4,
|
|
summary_type="last",
|
|
use_proj=True,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_input_lengths = use_input_lengths
|
|
self.use_token_type_ids = use_token_type_ids
|
|
self.use_labels = use_labels
|
|
self.gelu_activation = gelu_activation
|
|
self.sinusoidal_embeddings = sinusoidal_embeddings
|
|
self.asm = asm
|
|
self.n_langs = n_langs
|
|
self.vocab_size = vocab_size
|
|
self.n_special = n_special
|
|
self.summary_type = summary_type
|
|
self.causal = causal
|
|
self.use_proj = use_proj
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.n_langs = n_langs
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.initializer_range = initializer_range
|
|
self.summary_type = summary_type
|
|
self.num_labels = num_labels
|
|
self.num_choices = num_choices
|
|
self.scope = scope
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
input_mask = ids_tensor([self.batch_size, self.seq_length], 2).float()
|
|
|
|
input_lengths = None
|
|
if self.use_input_lengths:
|
|
input_lengths = ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2 # small variation of seq_length
|
|
|
|
token_type_ids = None
|
|
if self.use_token_type_ids:
|
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs)
|
|
|
|
sequence_labels = None
|
|
token_labels = None
|
|
is_impossible_labels = None
|
|
if self.use_labels:
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
|
is_impossible_labels = ids_tensor([self.batch_size], 2).float()
|
|
|
|
config = XLMConfig(
|
|
vocab_size_or_config_json_file=self.vocab_size,
|
|
n_special=self.n_special,
|
|
emb_dim=self.hidden_size,
|
|
n_layers=self.num_hidden_layers,
|
|
n_heads=self.num_attention_heads,
|
|
dropout=self.hidden_dropout_prob,
|
|
attention_dropout=self.attention_probs_dropout_prob,
|
|
gelu_activation=self.gelu_activation,
|
|
sinusoidal_embeddings=self.sinusoidal_embeddings,
|
|
asm=self.asm,
|
|
causal=self.causal,
|
|
n_langs=self.n_langs,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
initializer_range=self.initializer_range,
|
|
summary_type=self.summary_type,
|
|
use_proj=self.use_proj)
|
|
|
|
return config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, input_mask
|
|
|
|
def check_loss_output(self, result):
|
|
self.parent.assertListEqual(
|
|
list(result["loss"].size()),
|
|
[])
|
|
|
|
def create_and_check_xlm_model(self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, input_mask):
|
|
model = XLMModel(config=config)
|
|
model.eval()
|
|
outputs = model(input_ids, lengths=input_lengths, langs=token_type_ids)
|
|
outputs = model(input_ids, langs=token_type_ids)
|
|
outputs = model(input_ids)
|
|
sequence_output = outputs[0]
|
|
result = {
|
|
"sequence_output": sequence_output,
|
|
}
|
|
self.parent.assertListEqual(
|
|
list(result["sequence_output"].size()),
|
|
[self.batch_size, self.seq_length, self.hidden_size])
|
|
|
|
|
|
def create_and_check_xlm_lm_head(self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, input_mask):
|
|
model = XLMWithLMHeadModel(config)
|
|
model.eval()
|
|
|
|
loss, logits = model(input_ids, token_type_ids=token_type_ids, labels=token_labels)
|
|
|
|
result = {
|
|
"loss": loss,
|
|
"logits": logits,
|
|
}
|
|
|
|
self.parent.assertListEqual(
|
|
list(result["loss"].size()),
|
|
[])
|
|
self.parent.assertListEqual(
|
|
list(result["logits"].size()),
|
|
[self.batch_size, self.seq_length, self.vocab_size])
|
|
|
|
|
|
def create_and_check_xlm_qa(self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, input_mask):
|
|
model = XLMForQuestionAnswering(config)
|
|
model.eval()
|
|
|
|
outputs = model(input_ids)
|
|
start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits, mems = outputs
|
|
|
|
outputs = model(input_ids, start_positions=sequence_labels,
|
|
end_positions=sequence_labels,
|
|
cls_index=sequence_labels,
|
|
is_impossible=is_impossible_labels,
|
|
p_mask=input_mask)
|
|
|
|
outputs = model(input_ids, start_positions=sequence_labels,
|
|
end_positions=sequence_labels,
|
|
cls_index=sequence_labels,
|
|
is_impossible=is_impossible_labels)
|
|
|
|
total_loss, start_logits, end_logits, cls_logits = outputs
|
|
|
|
outputs = model(input_ids, start_positions=sequence_labels,
|
|
end_positions=sequence_labels)
|
|
|
|
total_loss, start_logits, end_logits = outputs
|
|
|
|
result = {
|
|
"loss": total_loss,
|
|
"start_logits": start_logits,
|
|
"end_logits": end_logits,
|
|
"cls_logits": cls_logits,
|
|
}
|
|
|
|
self.parent.assertListEqual(
|
|
list(result["loss"].size()),
|
|
[])
|
|
self.parent.assertListEqual(
|
|
list(result["start_logits"].size()),
|
|
[self.batch_size, self.seq_length])
|
|
self.parent.assertListEqual(
|
|
list(result["end_logits"].size()),
|
|
[self.batch_size, self.seq_length])
|
|
self.parent.assertListEqual(
|
|
list(result["cls_logits"].size()),
|
|
[self.batch_size])
|
|
|
|
|
|
def create_and_check_xlm_sequence_classif(self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, input_mask):
|
|
model = XLMForSequenceClassification(config)
|
|
model.eval()
|
|
|
|
(logits,) = model(input_ids)
|
|
loss, logits = model(input_ids, labels=sequence_labels)
|
|
|
|
result = {
|
|
"loss": loss,
|
|
"logits": logits,
|
|
}
|
|
|
|
self.parent.assertListEqual(
|
|
list(result["loss"].size()),
|
|
[])
|
|
self.parent.assertListEqual(
|
|
list(result["logits"].size()),
|
|
[self.batch_size, self.type_sequence_label_size])
|
|
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(config, input_ids, token_type_ids, input_lengths,
|
|
sequence_labels, token_labels, is_impossible_labels, input_mask) = config_and_inputs
|
|
inputs_dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths}
|
|
return config, inputs_dict
|
|
|
|
def setUp(self):
|
|
self.model_tester = XLMModelTest.XLMModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=XLMConfig, emb_dim=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_xlm_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_xlm_model(*config_and_inputs)
|
|
|
|
# config_and_inputs = tester.prepare_config_and_inputs()
|
|
# tester.create_and_check_xlm_for_masked_lm(*config_and_inputs)
|
|
|
|
# config_and_inputs = tester.prepare_config_and_inputs()
|
|
# tester.create_and_check_xlm_for_multiple_choice(*config_and_inputs)
|
|
|
|
# config_and_inputs = tester.prepare_config_and_inputs()
|
|
# tester.create_and_check_xlm_for_question_answering(*config_and_inputs)
|
|
|
|
# config_and_inputs = tester.prepare_config_and_inputs()
|
|
# tester.create_and_check_xlm_for_sequence_classification(*config_and_inputs)
|
|
|
|
# config_and_inputs = tester.prepare_config_and_inputs()
|
|
# tester.create_and_check_xlm_for_token_classification(*config_and_inputs)
|
|
|
|
@pytest.mark.slow
|
|
def test_model_from_pretrained(self):
|
|
cache_dir = "/tmp/pytorch_transformers_test/"
|
|
for model_name in list(XLM_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
|
|
model = XLMModel.from_pretrained(model_name, cache_dir=cache_dir)
|
|
shutil.rmtree(cache_dir)
|
|
self.assertIsNotNone(model)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|