transformers/docs/source/en/model_doc/albert.mdx
Sylvain Gugger b9a768b3ff
Enable doc in Spanish (#16518)
* Reorganize doc for multilingual support

* Fix style

* Style

* Toc trees

* Adapt templates
2022-04-04 10:25:46 -04:00

171 lines
4.7 KiB
Plaintext

<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# ALBERT
## Overview
The ALBERT model was proposed in [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942) by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma,
Radu Soricut. It presents two parameter-reduction techniques to lower memory consumption and increase the training
speed of BERT:
- Splitting the embedding matrix into two smaller matrices.
- Using repeating layers split among groups.
The abstract from the paper is the following:
*Increasing model size when pretraining natural language representations often results in improved performance on
downstream tasks. However, at some point further model increases become harder due to GPU/TPU memory limitations,
longer training times, and unexpected model degradation. To address these problems, we present two parameter-reduction
techniques to lower memory consumption and increase the training speed of BERT. Comprehensive empirical evidence shows
that our proposed methods lead to models that scale much better compared to the original BERT. We also use a
self-supervised loss that focuses on modeling inter-sentence coherence, and show it consistently helps downstream tasks
with multi-sentence inputs. As a result, our best model establishes new state-of-the-art results on the GLUE, RACE, and
SQuAD benchmarks while having fewer parameters compared to BERT-large.*
Tips:
- ALBERT is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather
than the left.
- ALBERT uses repeating layers which results in a small memory footprint, however the computational cost remains
similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same
number of (repeating) layers.
This model was contributed by [lysandre](https://huggingface.co/lysandre). This model jax version was contributed by
[kamalkraj](https://huggingface.co/kamalkraj). The original code can be found [here](https://github.com/google-research/ALBERT).
## AlbertConfig
[[autodoc]] AlbertConfig
## AlbertTokenizer
[[autodoc]] AlbertTokenizer
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
## AlbertTokenizerFast
[[autodoc]] AlbertTokenizerFast
## Albert specific outputs
[[autodoc]] models.albert.modeling_albert.AlbertForPreTrainingOutput
[[autodoc]] models.albert.modeling_tf_albert.TFAlbertForPreTrainingOutput
## AlbertModel
[[autodoc]] AlbertModel
- forward
## AlbertForPreTraining
[[autodoc]] AlbertForPreTraining
- forward
## AlbertForMaskedLM
[[autodoc]] AlbertForMaskedLM
- forward
## AlbertForSequenceClassification
[[autodoc]] AlbertForSequenceClassification
- forward
## AlbertForMultipleChoice
[[autodoc]] AlbertForMultipleChoice
## AlbertForTokenClassification
[[autodoc]] AlbertForTokenClassification
- forward
## AlbertForQuestionAnswering
[[autodoc]] AlbertForQuestionAnswering
- forward
## TFAlbertModel
[[autodoc]] TFAlbertModel
- call
## TFAlbertForPreTraining
[[autodoc]] TFAlbertForPreTraining
- call
## TFAlbertForMaskedLM
[[autodoc]] TFAlbertForMaskedLM
- call
## TFAlbertForSequenceClassification
[[autodoc]] TFAlbertForSequenceClassification
- call
## TFAlbertForMultipleChoice
[[autodoc]] TFAlbertForMultipleChoice
- call
## TFAlbertForTokenClassification
[[autodoc]] TFAlbertForTokenClassification
- call
## TFAlbertForQuestionAnswering
[[autodoc]] TFAlbertForQuestionAnswering
- call
## FlaxAlbertModel
[[autodoc]] FlaxAlbertModel
- __call__
## FlaxAlbertForPreTraining
[[autodoc]] FlaxAlbertForPreTraining
- __call__
## FlaxAlbertForMaskedLM
[[autodoc]] FlaxAlbertForMaskedLM
- __call__
## FlaxAlbertForSequenceClassification
[[autodoc]] FlaxAlbertForSequenceClassification
- __call__
## FlaxAlbertForMultipleChoice
[[autodoc]] FlaxAlbertForMultipleChoice
- __call__
## FlaxAlbertForTokenClassification
[[autodoc]] FlaxAlbertForTokenClassification
- __call__
## FlaxAlbertForQuestionAnswering
[[autodoc]] FlaxAlbertForQuestionAnswering
- __call__