transformers/tests/models/glm4v/test_video_processing_glm4v.py
Yuxuan Zhang af9870265e
GLM-4.1V Model support (#38431)
* 20250508 Model Architecture

* Update modeling_glm4v.py

* Update modeling_glm4v.py

* Update modeling_glm4v.py

* update 1447

* 0526

* update

* format

* problem

* update

* update with only image embed diff

* Final

* upload

* update

* 1

* upload with ruff

* update

* update

* work

* 1

* 1

* update with new note

* 2

* Update convert_glm4v_mgt_weights_to_hf.py

* Update tokenization_auto.py

* update with new format

* remove rmsnrom

* draft with videos

* draft

* update

* update

* fix for review problem

* try to remove min_pixel

* update

* for test

* remove timestamps

* remove item

* update with remove

* change

* update 2200

* update

* Delete app.py

* format

* update

* Update test_video_processing_glm4v.py

* 1

* 2

* use new name

* Update test_video_processing_glm4v.py

* remove docs

* change

* update for image processors update

* 2108

* 2128

* Update modular_glm4v.py

* 1

* update some

* update

* rename

* 1

* remove tests output

* 2

* add configuration

* update

* Update test_video_processing_glm4v.py

* fix simple forward tests

* update with modular

* 1

* fix more tests

* fix generation test

* fix beam search and init

* modular changed

* fix beam search in case of single-image/video. Fails if multiple visuals per text

* update processor

* update test

* pass

* fix beam search

* update

* param correct

* Update convert_glm4v_mgt_weights_to_hf.py

* 1

* Update test_modeling_glm4v.py

* 4

* 2

* 2123 video process

* 2

* revert

* 1

* 2

* revert processing

* update preprocesor

* changed

* 1

* update

* update

* 6

* update

* update

* update

* Delete tmp.txt

* config

* Update video_processing_glm4v.py

* apply modular correctly

* move functions

* fix order

* update the longest_edge

* style

* simplify a lot

* fix random order of classes

* skip integration tests

* correctly fix the tests

* fix TP plan

---------

Co-authored-by: raushan <raushan@huggingface.co>
Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-06-25 10:43:05 +02:00

331 lines
14 KiB
Python

# coding=utf-8
# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from transformers.image_utils import IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_torchvision_available, is_vision_available
from ...test_video_processing_common import VideoProcessingTestMixin, prepare_video_inputs
if is_torch_available():
from PIL import Image
if is_vision_available():
if is_torchvision_available():
from transformers import Glm4vVideoProcessor
from transformers.models.glm4v.video_processing_glm4v import smart_resize
class Glm4vVideoProcessingTester:
def __init__(
self,
parent,
batch_size=5,
num_frames=8,
num_channels=3,
min_resolution=30,
max_resolution=80,
temporal_patch_size=2,
patch_size=14,
merge_size=2,
do_resize=True,
size=None,
do_normalize=True,
image_mean=IMAGENET_STANDARD_MEAN,
image_std=IMAGENET_STANDARD_STD,
do_convert_rgb=True,
):
size = size if size is not None else {"longest_edge": 20}
self.parent = parent
self.batch_size = batch_size
self.num_frames = num_frames
self.num_channels = num_channels
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.do_convert_rgb = do_convert_rgb
self.temporal_patch_size = temporal_patch_size
self.patch_size = patch_size
self.merge_size = merge_size
def prepare_video_processor_dict(self):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_convert_rgb": self.do_convert_rgb,
"do_sample_frames": True,
}
def prepare_video_metadata(self, videos):
video_metadata = []
for video in videos:
if isinstance(video, list):
num_frames = len(video)
elif hasattr(video, "shape"):
if len(video.shape) == 4: # (T, H, W, C)
num_frames = video.shape[0]
else:
num_frames = 1
else:
num_frames = self.num_frames
metadata = {
"fps": 2,
"duration": num_frames / 2,
"total_frames": num_frames,
}
video_metadata.append(metadata)
return video_metadata
def expected_output_video_shape(self, videos):
grid_t = self.num_frames // self.temporal_patch_size
hidden_dim = self.num_channels * self.temporal_patch_size * self.patch_size * self.patch_size
seq_len = 0
for video in videos:
if isinstance(video, list) and isinstance(video[0], Image.Image):
video = np.stack([np.array(frame) for frame in video])
elif hasattr(video, "shape"):
pass
else:
video = np.array(video)
if hasattr(video, "shape") and len(video.shape) >= 3:
if len(video.shape) == 4:
t, height, width = video.shape[:3]
elif len(video.shape) == 3:
height, width = video.shape[:2]
t = 1
else:
t, height, width = self.num_frames, self.min_resolution, self.min_resolution
else:
t, height, width = self.num_frames, self.min_resolution, self.min_resolution
resized_height, resized_width = smart_resize(
t,
height,
width,
factor=self.patch_size * self.merge_size,
)
grid_h, grid_w = resized_height // self.patch_size, resized_width // self.patch_size
seq_len += grid_t * grid_h * grid_w
return [seq_len, hidden_dim]
def prepare_video_inputs(self, equal_resolution=False, return_tensors="pil"):
videos = prepare_video_inputs(
batch_size=self.batch_size,
num_frames=self.num_frames,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
return_tensors=return_tensors,
)
return videos
@require_torch
@require_vision
class Glm4vVideoProcessingTest(VideoProcessingTestMixin, unittest.TestCase):
fast_video_processing_class = Glm4vVideoProcessor if is_torchvision_available() else None
input_name = "pixel_values_videos"
def setUp(self):
super().setUp()
self.video_processor_tester = Glm4vVideoProcessingTester(self)
@property
def video_processor_dict(self):
return self.video_processor_tester.prepare_video_processor_dict()
def test_video_processor_from_dict_with_kwargs(self):
video_processor = self.fast_video_processing_class.from_dict(self.video_processor_dict)
self.assertEqual(video_processor.size, {"longest_edge": 20})
video_processor = self.fast_video_processing_class.from_dict(self.video_processor_dict, size=42)
self.assertEqual(video_processor.size, {"height": 42, "width": 42})
def test_call_pil(self):
for video_processing_class in self.video_processor_list:
video_processing = video_processing_class(**self.video_processor_dict)
video_inputs = self.video_processor_tester.prepare_video_inputs(
equal_resolution=False, return_tensors="pil"
)
for video in video_inputs:
self.assertIsInstance(video[0], Image.Image)
video_metadata = self.video_processor_tester.prepare_video_metadata(video_inputs)
encoded_videos = video_processing(
video_inputs[0], video_metadata=[video_metadata[0]], return_tensors="pt"
)[self.input_name]
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]])
self.assertEqual(list(encoded_videos.shape), expected_output_video_shape)
encoded_videos = video_processing(video_inputs, video_metadata=video_metadata, return_tensors="pt")[
self.input_name
]
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs)
self.assertEqual(list(encoded_videos.shape), expected_output_video_shape)
def test_call_numpy(self):
for video_processing_class in self.video_processor_list:
video_processing = video_processing_class(**self.video_processor_dict)
video_inputs = self.video_processor_tester.prepare_video_inputs(
equal_resolution=False, return_tensors="np"
)
video_metadata = self.video_processor_tester.prepare_video_metadata(video_inputs)
encoded_videos = video_processing(
video_inputs[0], video_metadata=[video_metadata[0]], return_tensors="pt"
)[self.input_name]
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]])
self.assertEqual(list(encoded_videos.shape), expected_output_video_shape)
encoded_videos = video_processing(video_inputs, video_metadata=video_metadata, return_tensors="pt")[
self.input_name
]
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs)
self.assertEqual(list(encoded_videos.shape), expected_output_video_shape)
def test_call_pytorch(self):
for video_processing_class in self.video_processor_list:
video_processing = video_processing_class(**self.video_processor_dict)
video_inputs = self.video_processor_tester.prepare_video_inputs(
equal_resolution=False, return_tensors="pt"
)
video_metadata = self.video_processor_tester.prepare_video_metadata(video_inputs)
encoded_videos = video_processing(
video_inputs[0], video_metadata=[video_metadata[0]], return_tensors="pt"
)[self.input_name]
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]])
self.assertEqual(list(encoded_videos.shape), expected_output_video_shape)
encoded_videos = video_processing(video_inputs, video_metadata=video_metadata, return_tensors="pt")[
self.input_name
]
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs)
self.assertEqual(list(encoded_videos.shape), expected_output_video_shape)
@unittest.skip("Skip for now, the test needs adjustment fo GLM-4.1V")
def test_call_numpy_4_channels(self):
for video_processing_class in self.video_processor_list:
# Test that can process videos which have an arbitrary number of channels
# Initialize video_processing
video_processor = video_processing_class(**self.video_processor_dict)
# create random numpy tensors
self.video_processor_tester.num_channels = 4
video_inputs = self.video_processor_tester.prepare_video_inputs(
equal_resolution=False, return_tensors="np"
)
# Test not batched input
encoded_videos = video_processor(
video_inputs[0],
return_tensors="pt",
input_data_format="channels_last",
image_mean=0,
image_std=1,
)[self.input_name]
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]])
self.assertEqual(list(encoded_videos.shape), expected_output_video_shape)
# Test batched
encoded_videos = video_processor(
video_inputs,
return_tensors="pt",
input_data_format="channels_last",
image_mean=0,
image_std=1,
)[self.input_name]
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs)
self.assertEqual(list(encoded_videos.shape), expected_output_video_shape)
def test_nested_input(self):
"""Tests that the processor can work with nested list where each video is a list of arrays"""
for video_processing_class in self.video_processor_list:
video_processing = video_processing_class(**self.video_processor_dict)
video_inputs = self.video_processor_tester.prepare_video_inputs(
equal_resolution=False, return_tensors="np"
)
video_inputs_nested = [list(video) for video in video_inputs]
video_metadata = self.video_processor_tester.prepare_video_metadata(video_inputs)
# Test not batched input
encoded_videos = video_processing(
video_inputs_nested[0], video_metadata=[video_metadata[0]], return_tensors="pt"
)[self.input_name]
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape([video_inputs[0]])
self.assertEqual(list(encoded_videos.shape), expected_output_video_shape)
# Test batched
encoded_videos = video_processing(video_inputs_nested, video_metadata=video_metadata, return_tensors="pt")[
self.input_name
]
expected_output_video_shape = self.video_processor_tester.expected_output_video_shape(video_inputs)
self.assertEqual(list(encoded_videos.shape), expected_output_video_shape)
def test_call_sample_frames(self):
for video_processing_class in self.video_processor_list:
video_processor_dict = self.video_processor_dict.copy()
video_processing = video_processing_class(**video_processor_dict)
prev_num_frames = self.video_processor_tester.num_frames
self.video_processor_tester.num_frames = 8
prev_min_resolution = getattr(self.video_processor_tester, "min_resolution", None)
prev_max_resolution = getattr(self.video_processor_tester, "max_resolution", None)
self.video_processor_tester.min_resolution = 56
self.video_processor_tester.max_resolution = 112
video_inputs = self.video_processor_tester.prepare_video_inputs(
equal_resolution=False,
return_tensors="torch",
)
metadata = [[{"total_num_frames": 8, "fps": 4}]]
batched_metadata = metadata * len(video_inputs)
encoded_videos = video_processing(video_inputs[0], return_tensors="pt", video_metadata=metadata)[
self.input_name
]
encoded_videos_batched = video_processing(
video_inputs, return_tensors="pt", video_metadata=batched_metadata
)[self.input_name]
self.assertIsNotNone(encoded_videos)
self.assertIsNotNone(encoded_videos_batched)
self.assertEqual(len(encoded_videos.shape), 2)
self.assertEqual(len(encoded_videos_batched.shape), 2)
with self.assertRaises(ValueError):
video_processing(video_inputs[0], return_tensors="pt")[self.input_name]
self.video_processor_tester.num_frames = prev_num_frames
if prev_min_resolution is not None:
self.video_processor_tester.min_resolution = prev_min_resolution
if prev_max_resolution is not None:
self.video_processor_tester.max_resolution = prev_max_resolution