transformers/examples/pytorch/test_examples.py
Patrick von Platen 4a320f6c9a
[ASR] Add official ASR CTC example to examples/pytorch/speech-recognition (#13620)
* up

* rename

* add asr example

* add auto feature extractor

* some more fixes

* correct layerdrop

* correct for multi-gpu dist

* clean up

* refactor

* refactor

* more fixes

* more fixes

* clean-up

* finish

* up

* Apply suggestions from code review

* fix isort

* update

* up

* add note

* apply surajs suggestions

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* isort

* small change

* Apply suggestions from code review

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* Apply suggestions from code review

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* add hubert

* Update examples/pytorch/speech-recognition/run_speech_recognition_ctc.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
2021-09-24 07:01:11 +02:00

413 lines
14 KiB
Python

# coding=utf-8
# Copyright 2018 HuggingFace Inc..
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
import torch
from transformers.file_utils import is_apex_available
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow, torch_device
SRC_DIRS = [
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
"text-generation",
"text-classification",
"token-classification",
"language-modeling",
"multiple-choice",
"question-answering",
"summarization",
"translation",
"image-classification",
"speech-recognition",
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm
import run_generation
import run_glue
import run_image_classification
import run_mlm
import run_ner
import run_qa as run_squad
import run_speech_recognition_ctc
import run_summarization
import run_swag
import run_translation
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()
def get_setup_file():
parser = argparse.ArgumentParser()
parser.add_argument("-f")
args = parser.parse_args()
return args.f
def get_results(output_dir):
results = {}
path = os.path.join(output_dir, "all_results.json")
if os.path.exists(path):
with open(path, "r") as f:
results = json.load(f)
else:
raise ValueError(f"can't find {path}")
return results
def is_cuda_and_apex_available():
is_using_cuda = torch.cuda.is_available() and torch_device == "cuda"
return is_using_cuda and is_apex_available()
class ExamplesTests(TestCasePlus):
def test_run_glue(self):
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_glue.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--overwrite_output_dir
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--do_train
--do_eval
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--max_steps=10
--warmup_steps=2
--seed=42
--max_seq_length=128
""".split()
if is_cuda_and_apex_available():
testargs.append("--fp16")
with patch.object(sys, "argv", testargs):
run_glue.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_accuracy"], 0.75)
def test_run_clm(self):
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_clm.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--block_size 128
--per_device_train_batch_size 5
--per_device_eval_batch_size 5
--num_train_epochs 2
--output_dir {tmp_dir}
--overwrite_output_dir
""".split()
if torch.cuda.device_count() > 1:
# Skipping because there are not enough batches to train the model + would need a drop_last to work.
return
if torch_device != "cuda":
testargs.append("--no_cuda")
with patch.object(sys, "argv", testargs):
run_clm.main()
result = get_results(tmp_dir)
self.assertLess(result["perplexity"], 100)
def test_run_mlm(self):
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_mlm.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--overwrite_output_dir
--do_train
--do_eval
--prediction_loss_only
--num_train_epochs=1
""".split()
if torch_device != "cuda":
testargs.append("--no_cuda")
with patch.object(sys, "argv", testargs):
run_mlm.main()
result = get_results(tmp_dir)
self.assertLess(result["perplexity"], 42)
def test_run_ner(self):
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
# with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
epochs = 7 if get_gpu_count() > 1 else 2
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_ner.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--do_train
--do_eval
--warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
""".split()
if torch_device != "cuda":
testargs.append("--no_cuda")
with patch.object(sys, "argv", testargs):
run_ner.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_accuracy"], 0.75)
self.assertLess(result["eval_loss"], 0.5)
def test_run_squad(self):
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_qa.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--max_steps=10
--warmup_steps=2
--do_train
--do_eval
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
""".split()
with patch.object(sys, "argv", testargs):
run_squad.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_f1"], 30)
self.assertGreaterEqual(result["eval_exact"], 30)
def test_run_swag(self):
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_swag.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/swag/sample.json
--validation_file tests/fixtures/tests_samples/swag/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--max_steps=20
--warmup_steps=2
--do_train
--do_eval
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
""".split()
with patch.object(sys, "argv", testargs):
run_swag.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_accuracy"], 0.8)
def test_generation(self):
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
testargs = ["run_generation.py", "--prompt=Hello", "--length=10", "--seed=42"]
if is_cuda_and_apex_available():
testargs.append("--fp16")
model_type, model_name = (
"--model_type=gpt2",
"--model_name_or_path=sshleifer/tiny-gpt2",
)
with patch.object(sys, "argv", testargs + [model_type, model_name]):
result = run_generation.main()
self.assertGreaterEqual(len(result[0]), 10)
@slow
def test_run_summarization(self):
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_summarization.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--max_steps=50
--warmup_steps=8
--do_train
--do_eval
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--predict_with_generate
""".split()
with patch.object(sys, "argv", testargs):
run_summarization.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_rouge1"], 10)
self.assertGreaterEqual(result["eval_rouge2"], 2)
self.assertGreaterEqual(result["eval_rougeL"], 7)
self.assertGreaterEqual(result["eval_rougeLsum"], 7)
@slow
def test_run_translation(self):
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_translation.py
--model_name_or_path sshleifer/student_marian_en_ro_6_1
--source_lang en
--target_lang ro
--train_file tests/fixtures/tests_samples/wmt16/sample.json
--validation_file tests/fixtures/tests_samples/wmt16/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--max_steps=50
--warmup_steps=8
--do_train
--do_eval
--learning_rate=3e-3
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--predict_with_generate
--source_lang en_XX
--target_lang ro_RO
""".split()
with patch.object(sys, "argv", testargs):
run_translation.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_bleu"], 30)
def test_run_image_classification(self):
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_image_classification.py
--output_dir {tmp_dir}
--model_name_or_path google/vit-base-patch16-224-in21k
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--do_train
--do_eval
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--remove_unused_columns False
--overwrite_output_dir True
--dataloader_num_workers 16
--metric_for_best_model accuracy
--max_steps 10
--train_val_split 0.1
--seed 42
""".split()
if is_cuda_and_apex_available():
testargs.append("--fp16")
with patch.object(sys, "argv", testargs):
run_image_classification.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_accuracy"], 0.8)
def test_run_speech_recognition_ctc(self):
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_speech_recognition_ctc.py
--output_dir {tmp_dir}
--model_name_or_path hf-internal-testing/tiny-random-wav2vec2
--dataset_name patrickvonplaten/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--eval_split_name validation
--audio_column_name file
--do_train
--do_eval
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--remove_unused_columns False
--overwrite_output_dir True
--preprocessing_num_workers 16
--max_steps 10
--seed 42
""".split()
if is_cuda_and_apex_available():
testargs.append("--fp16")
with patch.object(sys, "argv", testargs):
run_speech_recognition_ctc.main()
result = get_results(tmp_dir)
self.assertLess(result["eval_loss"], result["train_loss"])