transformers/tests/models/gemma3n/test_modeling_gemma3n.py
Cyril Vallez dbc98328da
Several fixes for Gemma3n (#39135)
* remove the skips

* fix the epsilon to a small value (does not make sense otherwise)

* safeguard

* overload test_eager_matches_sdpa

* Update test_modeling_common.py

* skip appropriate tests

* correct no_split_layer

* fix all devices issue

* fix backward

* fix
2025-07-01 10:34:53 +02:00

953 lines
38 KiB
Python

# coding=utf-8
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Gemma3n model."""
import tempfile
import unittest
import numpy as np
import pytest
from datasets import load_dataset
from parameterized import parameterized
from transformers import (
AutoModelForCausalLM,
AutoProcessor,
AutoTokenizer,
Gemma3nAudioConfig,
Gemma3nAudioFeatureExtractor,
Gemma3nConfig,
Gemma3nTextConfig,
GenerationConfig,
is_torch_available,
)
from transformers.testing_utils import (
cleanup,
require_flash_attn,
require_read_token,
require_torch,
require_torch_gpu,
require_torch_sdpa,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
TEST_EAGER_MATCHES_SDPA_INFERENCE_PARAMETERIZATION,
ModelTesterMixin,
_test_eager_matches_sdpa_inference,
floats_tensor,
ids_tensor,
)
from ..gemma.test_modeling_gemma import GemmaModelTester
if is_torch_available():
import torch
from transformers import (
Gemma3nAudioEncoder,
Gemma3nForCausalLM,
Gemma3nForConditionalGeneration,
Gemma3nModel,
Gemma3nTextModel,
)
class Gemma3nAudioModelTester:
def __init__(
self,
parent,
batch_size=2,
num_channels=32, # feature_size / input_feat_size
sampling_rate=16_000,
raw_audio_length=8_000,
is_training=True,
):
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.sampling_rate = sampling_rate
self.raw_audio_length = raw_audio_length
self.is_training = is_training
def get_feature_extractor_config(self):
return {
"feature_size": self.num_channels,
"sampling_rate": self.sampling_rate,
"padding_value": 0.0,
"return_attention_mask": True,
"frame_length_ms": 32.0,
"hop_length_ms": 10.0,
"dither": 0.0, # Important for determinism
}
def get_audio_encoder_config(self):
return Gemma3nAudioConfig(
input_feat_size=self.num_channels,
hidden_size=32,
conf_num_attention_heads=4,
conf_num_hidden_layers=2,
sscp_conv_channel_size=(16, 8),
conf_conv_kernel_size=3,
conf_attention_chunk_size=4,
conf_attention_context_left=5,
)
def prepare_config_and_inputs_for_common(self):
# Prepare inputs for the audio encoder
feature_extractor_config = self.get_feature_extractor_config()
audio_encoder_config = self.get_audio_encoder_config()
np.random.seed(0)
raw_speech_1 = np.sin(2 * np.pi * 440 * np.linspace(0, 1, self.raw_audio_length)).astype(np.float32)
raw_speech_2 = np.random.randn(self.raw_audio_length // 2).astype(np.float32)
raw_speech = [raw_speech_1, raw_speech_2]
feature_extractor = Gemma3nAudioFeatureExtractor(**feature_extractor_config)
audio_inputs = feature_extractor(raw_speech, return_tensors="pt")
input_features = audio_inputs["input_features"]
# The encoder expects a padding mask (True for padding), while the feature extractor
# returns an attention mask (True for valid tokens). We must invert it.
input_features_mask = ~audio_inputs["input_features_mask"].to(torch.bool)
inputs_dict = {
"audio_mel": input_features,
"audio_mel_mask": input_features_mask,
}
return audio_encoder_config, inputs_dict
@unittest.skip("Skipped for now!")
@require_torch
class Gemma3nAudioModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (Gemma3nAudioEncoder,) if is_torch_available() else ()
test_pruning = False
test_head_masking = False
test_missing_keys = False
is_generative = False
_is_stateful = True
main_input_name = "audio_mel"
test_initialization = False
test_can_init_all_missing_weights = False
def setUp(self):
self.model_tester = Gemma3nAudioModelTester(self)
self.config_tester = ConfigTester(self, config_class=Gemma3nAudioConfig, hidden_size=37)
torch.manual_seed(0)
# The following values are golden outputs from a deterministic run of the components.
# They are used to ensure that changes to the code do not alter the numerical output.
# Generated with seeds np.random.seed(0) and torch.manual_seed(0).
self.expected_input_features_shape = (2, 48, 32)
self.expected_input_features_slice = np.array([-5.733152, -5.337127, -4.916284, -4.378989, -3.7622747])
self.expected_input_features_mask_shape = (2, 48)
self.expected_input_features_mask_slice = np.array([True, True, True, True, False])
self.expected_encoder_output_shape = (2, 3, 32)
self.expected_encoder_output_slice = torch.tensor([-0.4159, 0.6459, 0.6305, 2.2902, 0.9683])
self.expected_encoder_mask_shape = (2, 3)
self.expected_encoder_mask_slice = torch.tensor([False, False, True])
# Prepare a shared feature extractor and raw audio for the tests
self.feature_extractor = Gemma3nAudioFeatureExtractor(**self.model_tester.get_feature_extractor_config())
np.random.seed(0)
raw_speech_1 = np.sin(2 * np.pi * 440 * np.linspace(0, 1, self.model_tester.raw_audio_length)).astype(
np.float32
)
raw_speech_2 = np.random.randn(self.model_tester.raw_audio_length // 2).astype(np.float32)
self.raw_speech = [raw_speech_1, raw_speech_2]
@unittest.skip("Audio encoder does not support attention output")
def test_attention_outputs(self):
pass
@unittest.skip("Audio encoder does not support hidden state output")
def test_hidden_states_output(self):
pass
@unittest.skip("Audio encoder returns a tuple, not a ModelOutput object, skipping equivalence test.")
def test_model_outputs_equivalence(self):
pass
@unittest.skip("Audio encoder does not support retaining gradients on hidden states/attentions.")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip("Audio encoder does not have a concept of token embeddings")
def test_model_get_set_embeddings(self):
pass
@unittest.skip("Audio encoder does not have a concept of token embeddings")
def test_resize_tokens_embeddings(self):
pass
@unittest.skip("This model has a complex downsampling scheme that is hard to test with the generic batching test.")
def test_batching_equivalence(self):
pass
def test_feature_extractor(self):
"""
Tests the feature extractor's output against pre-computed golden values.
This ensures the NumPy-based audio preprocessing is correct and consistent.
"""
audio_inputs = self.feature_extractor(
self.raw_speech, padding="longest", pad_to_multiple_of=128, return_tensors="np"
)
input_features = audio_inputs["input_features"]
self.assertEqual(input_features.shape, self.expected_input_features_shape)
np.testing.assert_allclose(input_features[0, 0, :5], self.expected_input_features_slice, rtol=1e-5, atol=1e-5)
print(input_features[0, 0, :5])
input_features_mask = audio_inputs["input_features_mask"]
self.assertEqual(input_features_mask.shape, self.expected_input_features_mask_shape)
# The second audio sample is shorter (22 frames vs 48), so its mask should become False at index 22
np.testing.assert_array_equal(input_features_mask[1, 21:26], self.expected_input_features_mask_slice)
def test_audio_encoder(self):
"""
Tests the audio encoder's forward pass against pre-computed golden values.
This ensures the PyTorch-based audio encoding model is correct and consistent.
"""
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = Gemma3nAudioEncoder(config).to(torch_device).eval()
with torch.no_grad():
encoder_output, encoder_mask = model(**inputs_dict)
print(encoder_output[0, 0, :5])
# Check output encodings
self.assertEqual(encoder_output.shape, self.expected_encoder_output_shape)
torch.testing.assert_close(
encoder_output[0, 0, :5], self.expected_encoder_output_slice.to(torch_device), rtol=1e-4, atol=1e-4
)
# Check output mask (True means padded)
# Second sample has 22 feature frames. After downsampling by 4 (conv) -> 5 frames. After downsampling by 4 (reduction) -> 1 frame.
# So the mask should be [False, True, True]
self.assertEqual(encoder_mask.shape, self.expected_encoder_mask_shape)
torch.testing.assert_close(encoder_mask[1, :], self.expected_encoder_mask_slice.to(torch_device))
class Gemma3nTextModelTester(GemmaModelTester):
activation_sparsity_pattern = None
forced_config_args = ["activation_sparsity_pattern"]
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=False,
use_labels=True,
vocab_size=99,
vocab_size_per_layer_input=99,
hidden_size=16,
hidden_size_per_layer_input=16,
num_hidden_layers=4, # override to correctly test sharing cache pattern
num_kv_shared_layers=2, # important to override
layer_types=[
"full_attention",
"sliding_attention",
"full_attention",
"sliding_attention",
], # similarly we want to test sharing on both types
num_attention_heads=2,
num_key_value_heads=2,
altup_num_inputs=2,
intermediate_size=21,
hidden_activation="gelu_pytorch_tanh",
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
is_decoder=False,
):
self._verify_model_attributes()
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.vocab_size_per_layer_input = vocab_size_per_layer_input
self.hidden_size = hidden_size
self.hidden_size_per_layer_input = hidden_size_per_layer_input
self.num_hidden_layers = num_hidden_layers
self.num_kv_shared_layers = num_kv_shared_layers
self.layer_types = layer_types
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.altup_num_inputs = altup_num_inputs
self.intermediate_size = intermediate_size
self.hidden_activation = hidden_activation
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.head_dim = self.hidden_size // self.num_attention_heads
self.is_decoder = is_decoder
if is_torch_available():
config_class = Gemma3nTextConfig
model_class = Gemma3nTextModel
for_causal_lm_class = Gemma3nForCausalLM
@require_torch
class Gemma3nTextModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (Gemma3nTextModel, Gemma3nForCausalLM) if is_torch_available() else ()
all_generative_model_classes = (Gemma3nForCausalLM,) if is_torch_available() else ()
test_headmasking = False
test_pruning = False
_is_stateful = True
model_split_percents = [0.5, 0.6]
def setUp(self):
self.model_tester = Gemma3nTextModelTester(self)
self.config_tester = ConfigTester(
self,
config_class=Gemma3nConfig,
hidden_size=37,
text_config={"activation_sparsity_pattern": None},
)
def _check_hidden_states_for_generate(
self, batch_size, hidden_states, prompt_length, output_length, config, use_cache=False
):
"Gemma3n has special hidden states shape with 1 additional dim (which is then reduced with projections)"
self.assertIsInstance(hidden_states, tuple)
self.assertListEqual(
[isinstance(iter_hidden_states, tuple) for iter_hidden_states in hidden_states],
[True] * len(hidden_states),
)
self.assertEqual(len(hidden_states), (output_length - prompt_length))
# When `output_hidden_states=True`, each iteration of generate appends the hidden states corresponding to the
# new token(s)
# NOTE: `HybridCache` may have different lengths on different layers, if this test starts failing add more
# elaborate checks
for generated_length, iter_hidden_states in enumerate(hidden_states):
# regardless of using cache, the first forward pass will have the full prompt as input
if use_cache and generated_length > 0:
model_input_length = 1
else:
model_input_length = prompt_length + generated_length
expected_shape = (config.altup_num_inputs, batch_size, model_input_length, config.hidden_size)
# check hidden size
self.assertListEqual(
[layer_hidden_states.shape for layer_hidden_states in iter_hidden_states],
[expected_shape] * len(iter_hidden_states),
)
@parameterized.expand(TEST_EAGER_MATCHES_SDPA_INFERENCE_PARAMETERIZATION)
@require_torch_sdpa
def test_eager_matches_sdpa_inference(
self,
name,
torch_dtype,
padding_side,
use_attention_mask,
output_attentions,
enable_kernels,
):
"We need to relax a bit the `atols` for fp32 here due to the altup projections"
atols = {
("cpu", False, torch.float32): 1e-3, # this was relaxed
("cpu", False, torch.float16): 5e-3,
("cpu", False, torch.bfloat16): 1e-2,
("cpu", True, torch.float32): 1e-3, # this was relaxed
("cpu", True, torch.float16): 5e-3,
("cpu", True, torch.bfloat16): 1e-2,
("cuda", False, torch.float32): 1e-3, # this was relaxed
("cuda", False, torch.bfloat16): 1e-2,
("cuda", False, torch.float16): 5e-3,
("cuda", True, torch.float32): 1e-3, # this was relaxed
("cuda", True, torch.bfloat16): 1e-2,
("cuda", True, torch.float16): 5e-3,
}
_test_eager_matches_sdpa_inference(
self, name, torch_dtype, padding_side, use_attention_mask, output_attentions, enable_kernels, atols=atols
)
@pytest.mark.generate
@unittest.skip(
"Gemma3n has a special shape for hidden states (due to per-layer projs) which is not compatible with contrastive decoding"
)
def test_contrastive_generate(self):
pass
@pytest.mark.generate
@unittest.skip(
"Gemma3n has a special shape for hidden states (due to per-layer projs) which is not compatible with contrastive decoding"
)
def test_contrastive_generate_dict_outputs_use_cache(self):
pass
@pytest.mark.generate
@unittest.skip(
"Gemma3n has a special shape for hidden states (due to per-layer projs) which is not compatible with contrastive decoding"
)
def test_contrastive_generate_low_memory(self):
pass
@pytest.mark.generate
@unittest.skip(
"Gemma3n has a special shape for hidden states (due to per-layer projs) which is not compatible with dola decoding"
)
def test_dola_decoding_sample(self):
pass
class Gemma3nVision2TextModelTester:
text_config = {"activation_sparsity_pattern": None}
forced_config_args = ["text_config"]
def __init__(
self,
parent,
mm_tokens_per_image=2,
image_token_index=1,
boi_token_index=2,
eoi_token_index=3,
seq_length=25,
is_training=True,
vision_config={
"use_labels": True,
"image_size": 20,
"patch_size": 5,
"num_channels": 3,
"is_training": True,
"hidden_size": 32,
"num_key_value_heads": 1,
"num_hidden_layers": 2,
"num_attention_heads": 4,
"intermediate_size": 37,
"dropout": 0.1,
"attention_dropout": 0.1,
"initializer_range": 0.02,
},
use_cache=False,
):
self.parent = parent
# `image_token_index` is set to 0 to pass "resize_embeddings" test, do not modify
self.mm_tokens_per_image = mm_tokens_per_image
self.image_token_index = image_token_index
self.boi_token_index = boi_token_index
self.eoi_token_index = eoi_token_index
self.llm_tester = Gemma3nTextModelTester(self.parent)
self.text_config = self.llm_tester.get_config()
self.vision_config = vision_config
self.seq_length = seq_length
self.pad_token_id = self.text_config.pad_token_id
self.num_hidden_layers = self.text_config.num_hidden_layers
self.vocab_size = self.text_config.vocab_size
self.hidden_size = self.text_config.hidden_size
self.num_attention_heads = self.text_config.num_attention_heads
self.is_training = is_training
self.batch_size = 3
self.num_channels = vision_config["num_channels"]
self.image_size = vision_config["image_size"]
self.encoder_seq_length = seq_length
self.use_cache = use_cache
def get_config(self):
return Gemma3nConfig(
text_config=self.text_config,
vision_config=self.vision_config,
image_token_index=self.image_token_index,
boi_token_index=self.boi_token_index,
eoi_token_index=self.eoi_token_index,
mm_tokens_per_image=self.mm_tokens_per_image,
)
def prepare_config_and_inputs(self):
pixel_values = floats_tensor(
[
self.batch_size,
self.vision_config["num_channels"],
self.vision_config["image_size"],
self.vision_config["image_size"],
]
)
config = self.get_config()
return config, pixel_values
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
input_ids = ids_tensor([self.batch_size, self.seq_length], config.text_config.vocab_size - 1) + 1
attention_mask = input_ids.ne(self.pad_token_id).to(torch_device)
# set the 3 first tokens to be image, and ensure that no other tokens are image tokens
# do not change this unless you modified image size or patch size
input_ids[input_ids == config.image_token_index] = self.pad_token_id
input_ids[:, :1] = config.image_token_index
token_type_ids = torch.zeros_like(input_ids)
token_type_ids[input_ids == config.image_token_index] = 1
inputs_dict = {
"pixel_values": pixel_values,
"input_ids": input_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
return config, inputs_dict
@unittest.skip("Skipped for now!")
@require_torch
class Gemma3nVision2TextModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (Gemma3nModel, Gemma3nForConditionalGeneration) if is_torch_available() else ()
all_generative_model_classes = (Gemma3nForConditionalGeneration,) if is_torch_available() else ()
test_headmasking = False
test_pruning = False
test_missing_keys = False
_is_stateful = True
model_split_percents = [0.5, 0.6]
# MP works but offload doesn't work when the SigLIP MultiheadAttention is offloaded
# TODO: One potential solution would be to add to set preload_module_classes = ["SiglipMultiheadAttentionPoolingHead"]
# in the dispatch_model function
test_cpu_offload = False
test_disk_offload_safetensors = False
test_disk_offload_bin = False
def setUp(self):
self.model_tester = Gemma3nVision2TextModelTester(self)
self.config_tester = ConfigTester(
self,
config_class=Gemma3nConfig,
hidden_size=37,
text_config={"activation_sparsity_pattern": None},
)
@unittest.skip(reason="SiglipVisionModel (vision backbone) does not support standalone training")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(reason="SiglipVisionModel (vision backbone) does not support standalone training")
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(reason="SiglipVisionModel (vision backbone) does not support standalone training")
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(
reason="HybridCache can't be gathered because it is not iterable. Adding a simple iter and dumping `distributed_iterator`"
" as in Dynamic Cache doesnt work. NOTE: @gante all cache objects would need better compatibility with multi gpu setting"
)
def test_multi_gpu_data_parallel_forward(self):
pass
@unittest.skip("Failing because of unique cache (HybridCache)")
def test_model_outputs_equivalence(self, **kwargs):
pass
@parameterized.expand([("random",), ("same",)])
@pytest.mark.generate
@unittest.skip("Gemma3n has HybridCache which is not compatible with assisted decoding")
def test_assisted_decoding_matches_greedy_search(self, assistant_type):
pass
@unittest.skip("Gemma3n has HybridCache which is not compatible with assisted decoding")
def test_prompt_lookup_decoding_matches_greedy_search(self, assistant_type):
pass
@pytest.mark.generate
@unittest.skip("Gemma3n has HybridCache which is not compatible with assisted decoding")
def test_assisted_decoding_sample(self):
pass
@unittest.skip("Gemma3n has HybridCache which is not compatible with dola decoding")
def test_dola_decoding_sample(self):
pass
@unittest.skip("Gemma3n has HybridCache and doesn't support continue from past kv")
def test_generate_continue_from_past_key_values(self):
pass
@unittest.skip("Gemma3n has HybridCache and doesn't support low_memory generation")
def test_beam_search_low_memory(self):
pass
@unittest.skip("Gemma3n has HybridCache and doesn't support contrastive generation")
def test_contrastive_generate(self):
pass
@unittest.skip("Gemma3n has HybridCache and doesn't support contrastive generation")
def test_contrastive_generate_dict_outputs_use_cache(self):
pass
@unittest.skip("Gemma3n has HybridCache and doesn't support contrastive generation")
def test_contrastive_generate_low_memory(self):
pass
@unittest.skip("Gemma3n has HybridCache and doesn't support StaticCache. Though it could, it shouldn't support.")
def test_generate_with_static_cache(self):
pass
@unittest.skip("Gemma3n has HybridCache and doesn't support StaticCache. Though it could, it shouldn't support.")
def test_generate_from_inputs_embeds_with_static_cache(self):
pass
@unittest.skip(
reason="Siglip (vision backbone) uses the same initialization scheme as the Flax original implementation"
)
def test_initialization(self):
pass
@unittest.skip(
reason="Siglip has no FLEX attention, and we don't have a proper way to set/test attn in VLMs. TODO @raushan"
)
def test_flex_attention_with_grads(self):
pass
def test_automodelforcausallm(self):
"""
Regression test for #36741 -- make sure `AutoModelForCausalLM` works with a Gemma3n config, i.e. that
`AutoModelForCausalLM.from_pretrained` pulls the text config before loading the model
"""
config = self.model_tester.get_config()
model = Gemma3nForConditionalGeneration(config)
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir)
for_causal_lm = AutoModelForCausalLM.from_pretrained(tmp_dir)
self.assertIsInstance(for_causal_lm, Gemma3nForCausalLM)
@unittest.skip("Skipped for now!")
@slow
@require_torch_gpu
@require_read_token
class Gemma3nIntegrationTest(unittest.TestCase):
def setUp(self):
self.processor = AutoProcessor.from_pretrained("Google/gemma-3n-E4B-it", padding_side="left")
url = "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png"
self.messages = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{
"role": "user",
"content": [
{"type": "image", "url": url},
{"type": "text", "text": "What is shown in this image?"},
],
},
]
audio_ds = load_dataset(
"etechgrid/28.5k_wavfiles_dataset", "default", data_files="wav_dataset/103-1240-0000.wav"
)
self.audio_file_path = audio_ds["train"][0]["audio"]["path"]
def tearDown(self):
cleanup(torch_device, gc_collect=True)
def test_model_4b_bf16(self):
model_id = "Google/gemma-3n-E4B-it"
model = Gemma3nForConditionalGeneration.from_pretrained(
model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16
).to(torch_device)
inputs = self.processor.apply_chat_template(
self.messages,
tokenize=True,
return_dict=True,
return_tensors="pt",
add_generation_prompt=True,
).to(torch_device)
output = model.generate(**inputs, max_new_tokens=30, do_sample=False)
output_text = self.processor.batch_decode(output, skip_special_tokens=True)
EXPECTED_TEXTS = ['user\nYou are a helpful assistant.\n\n\n\n\n\nWhat is shown in this image?\nmodel\nCertainly! \n\nThe image shows a brown cow standing on a sandy beach with clear blue water and a blue sky in the background. It looks like'] # fmt: skip
self.assertEqual(output_text, EXPECTED_TEXTS)
def test_model_with_audio(self):
"""
Tests the full model pipeline with batched audio inputs provided as file paths.
This ensures the processor correctly loads and processes audio files.
"""
model_id = "Google/gemma-3n-E4B-it"
model = Gemma3nForConditionalGeneration.from_pretrained(
model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16
).to(torch_device)
messages = [
[
{
"role": "user",
"content": [
{"type": "text", "text": "Transcribe the following speech segment in English:"},
{"type": "audio", "audio": str(self.audio_file_path)},
],
}
],
]
inputs = self.processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
padding=True,
return_tensors="pt",
).to(torch_device, dtype=model.dtype)
input_len = inputs["input_ids"].shape[-1]
output = model.generate(**inputs, max_new_tokens=16, do_sample=False)
output = output[:, input_len:]
output_text = self.processor.batch_decode(output, skip_special_tokens=True)
EXPECTED_TEXTS = ["Chapter 1. Mrs. Rachel Lind is surprised.\n\nMrs. Rachel Lind"]
self.assertEqual(output_text, EXPECTED_TEXTS)
def test_model_4b_batch(self):
model_id = "Google/gemma-3n-E4B-it"
model = Gemma3nForConditionalGeneration.from_pretrained(
model_id, low_cpu_mem_usage=False, torch_dtype=torch.bfloat16
).to(torch_device)
messages_2 = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{
"role": "user",
"content": [
{
"type": "image",
"url": "https://huggingface.co/datasets/hf-internal-testing/fixtures-captioning/resolve/main/cow_beach_1.png",
},
{"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"},
{"type": "text", "text": "Are these images identical?"},
],
},
]
inputs = self.processor.apply_chat_template(
[self.messages, messages_2],
tokenize=True,
return_dict=True,
return_tensors="pt",
padding=True,
add_generation_prompt=True,
).to(torch_device)
output = model.generate(**inputs, max_new_tokens=30, do_sample=False)
output_text = self.processor.batch_decode(output, skip_special_tokens=True)
EXPECTED_TEXTS = [
'user\nYou are a helpful assistant.\n\n\n\n\n\nWhat is shown in this image?\nmodel\nCertainly! \n\nThe image shows a brown cow standing on a sandy beach with clear turquoise water and a blue sky in the background. It looks like',
"user\nYou are a helpful assistant.\n\n\n\n\n\n\n\n\n\nAre these images identical?\nmodel\nNo, these images are not identical. \n\nHere's a breakdown of the differences:\n\n* **Image 1:** Shows a cow"
] # fmt: skip
self.assertEqual(output_text, EXPECTED_TEXTS)
def test_model_4b_crops(self):
model_id = "Google/gemma-3n-E4B-it"
model = Gemma3nForConditionalGeneration.from_pretrained(
model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16
).to(torch_device)
crop_config = {
"images_kwargs": {
"do_pan_and_scan": True,
"pan_and_scan_max_num_crops": 448,
"pan_and_scan_min_crop_size": 32,
"pan_and_scan_min_ratio_to_activate": 0.3,
}
}
inputs = self.processor.apply_chat_template(
self.messages,
tokenize=True,
return_dict=True,
return_tensors="pt",
add_generation_prompt=True,
**crop_config,
).to(torch_device)
output = model.generate(**inputs, max_new_tokens=30, do_sample=False)
output_text = self.processor.batch_decode(output, skip_special_tokens=True)
EXPECTED_NUM_IMAGES = 3 # one for the origin image and two crops of images
EXPECTED_TEXTS = ['user\nYou are a helpful assistant.\n\nHere is the original image \n\n\n\n and here are some crops to help you see better \n\n\n\n \n\n\n\nWhat is shown in this image?\nmodel\nThe image shows a brown cow standing on a beach with a turquoise ocean and blue sky in the background.'] # fmt: skip
self.assertEqual(len(inputs["pixel_values"]), EXPECTED_NUM_IMAGES)
self.assertEqual(output_text, EXPECTED_TEXTS)
def test_model_4b_multiimage(self):
model_id = "Google/gemma-3n-E4B-it"
model = Gemma3nForConditionalGeneration.from_pretrained(
model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16
).to(torch_device)
messages = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{
"role": "user",
"content": [
{"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"},
{"type": "text", "text": "What do you see here?"},
],
},
]
inputs = self.processor.apply_chat_template(
messages,
tokenize=True,
return_dict=True,
return_tensors="pt",
padding=True,
add_generation_prompt=True,
).to(torch_device)
output = model.generate(**inputs, max_new_tokens=30, do_sample=False)
output_text = self.processor.batch_decode(output, skip_special_tokens=True)
EXPECTED_TEXTS = ["user\nYou are a helpful assistant.\n\n\n\n\n\nWhat do you see here?\nmodel\nOkay, let's break down what I see in this image:\n\n**Overall Scene:**\n\nIt looks like a street scene in a vibrant,"] # fmt: skip
self.assertEqual(output_text, EXPECTED_TEXTS)
def test_model_1b_text_only(self):
model_id = "google/gemma-3-1b-it"
model = Gemma3nForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16).to(
torch_device
)
tokenizer = AutoTokenizer.from_pretrained(model_id, padding_side="left")
inputs = tokenizer("Write a poem about Machine Learning.", return_tensors="pt").to(torch_device)
output = model.generate(**inputs, max_new_tokens=30, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
EXPECTED_TEXTS = ['Write a poem about Machine Learning.\n\n---\n\nThe data flows, a river deep,\nWith patterns hidden, secrets sleep.\nA neural net, a watchful eye,\nLearning'] # fmt: skip
self.assertEqual(output_text, EXPECTED_TEXTS)
# TODO: raushan FA2 generates gibberish for no reason, check later
@require_flash_attn
@require_torch_gpu
@pytest.mark.flash_attn_test
def test_model_4b_flash_attn(self):
model_id = "Google/gemma-3n-E4B-it"
model = Gemma3nForConditionalGeneration.from_pretrained(
model_id, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
).to(torch_device)
inputs = self.processor.apply_chat_template(
self.messages,
tokenize=True,
return_dict=True,
return_tensors="pt",
add_generation_prompt=True,
).to(torch_device)
output = model.generate(**inputs, max_new_tokens=30, do_sample=False)
output_text = self.processor.batch_decode(output, skip_special_tokens=True)
EXPECTED_TEXTS = ['user\nYou are a helpful assistant.\n\n\n\n\n\nWhat is shown in this image?\nmodel\nCertainly! \n\nThe image shows a brown and white cow standing on a sandy beach next to a turquoise ocean. It looks like a very sunny and'] # fmt: skip
self.assertEqual(output_text, EXPECTED_TEXTS)
@parameterized.expand([("flash_attention_2",), ("sdpa",), ("eager",)])
def test_generation_beyond_sliding_window(self, attn_implementation: str):
"""Test that we can correctly generate beyond the sliding window. This is non trivial as
we need to correctly slice the attention mask in all cases (because we use a HybridCache).
Outputs for every attention functions should be coherent and identical.
"""
model_id = "google/gemma-3-1b-it"
input_text = [
"This is a nice place. " * 800 + "I really enjoy the scenery,", # This is larger than 4096 tokens
"A list of colors: red, blue", # This will almost all be padding tokens
]
tokenizer = AutoTokenizer.from_pretrained(model_id, padding="left")
inputs = tokenizer(input_text, padding=True, return_tensors="pt").to(torch_device)
model = AutoModelForCausalLM.from_pretrained(
model_id, attn_implementation=attn_implementation, torch_dtype=torch.float16
).to(torch_device)
# Make sure prefill is larger than sliding window
input_size = inputs.input_ids.shape[-1]
self.assertTrue(input_size > model.config.sliding_window)
out = model.generate(**inputs, max_new_tokens=20)[:, input_size:]
output_text = tokenizer.batch_decode(out)
EXPECTED_COMPLETIONS = [" and I'm going to take a walk.\n\nI really enjoy the scenery, and I'", ", green, yellow, orange, purple, brown, black, white, gray.\n\nI'"] # fmt: skip
self.assertEqual(output_text, EXPECTED_COMPLETIONS)
def test_generation_beyond_sliding_window_with_generation_config(self):
"""
Same as `test_generation_beyond_sliding_window`, but passing a GenerationConfig. Regression test for #36684 --
ensures `cache_implementation='hybrid'` is correctly inherited from the base `model.generation_config`.
"""
model_id = "google/gemma-3-1b-it"
attn_implementation = "sdpa"
input_text = [
"This is a nice place. " * 800 + "I really enjoy the scenery,", # This is larger than 4096 tokens
"A list of colors: red, blue", # This will almost all be padding tokens
]
tokenizer = AutoTokenizer.from_pretrained(model_id, padding="left")
inputs = tokenizer(input_text, padding=True, return_tensors="pt").to(torch_device)
model = AutoModelForCausalLM.from_pretrained(
model_id, attn_implementation=attn_implementation, torch_dtype=torch.float16
).to(torch_device)
# Make sure prefill is larger than sliding window
input_size = inputs.input_ids.shape[-1]
self.assertTrue(input_size > model.config.sliding_window)
generation_config = GenerationConfig(max_new_tokens=20)
out = model.generate(**inputs, generation_config=generation_config)[:, input_size:]
output_text = tokenizer.batch_decode(out)
EXPECTED_COMPLETIONS = [" and I'm going to take a walk.\n\nI really enjoy the scenery, and I'", ", green, yellow, orange, purple, brown, black, white, gray.\n\nI'"] # fmt: skip
self.assertEqual(output_text, EXPECTED_COMPLETIONS)