mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00

* Update SEW integration test tolerance * Update audio classification * Update test * Remove torchaudio * Add dataset revision * Hub branch naming * Revert dataset revisions * Update datasets
610 lines
25 KiB
Python
Executable File
610 lines
25 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
|
|
""" Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
|
|
|
|
import functools
|
|
import json
|
|
import logging
|
|
import os
|
|
import re
|
|
import sys
|
|
from dataclasses import dataclass, field
|
|
from typing import Dict, List, Optional, Union
|
|
|
|
import datasets
|
|
import numpy as np
|
|
import torch
|
|
from datasets import DatasetDict, load_dataset, load_metric
|
|
|
|
import transformers
|
|
from transformers import (
|
|
AutoConfig,
|
|
AutoFeatureExtractor,
|
|
AutoModelForCTC,
|
|
AutoTokenizer,
|
|
HfArgumentParser,
|
|
Trainer,
|
|
TrainingArguments,
|
|
Wav2Vec2Processor,
|
|
set_seed,
|
|
)
|
|
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
|
from transformers.utils import check_min_version
|
|
from transformers.utils.versions import require_version
|
|
|
|
|
|
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
|
check_min_version("4.12.0.dev0")
|
|
|
|
require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def list_field(default=None, metadata=None):
|
|
return field(default_factory=lambda: default, metadata=metadata)
|
|
|
|
|
|
@dataclass
|
|
class ModelArguments:
|
|
"""
|
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
|
"""
|
|
|
|
model_name_or_path: str = field(
|
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
|
)
|
|
cache_dir: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
|
)
|
|
freeze_feature_extractor: Optional[bool] = field(
|
|
default=True, metadata={"help": "Whether to freeze the feature extractor layers of the model."}
|
|
)
|
|
attention_dropout: Optional[float] = field(
|
|
default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
|
|
)
|
|
activation_dropout: Optional[float] = field(
|
|
default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
|
|
)
|
|
feat_proj_dropout: Optional[float] = field(
|
|
default=0.0, metadata={"help": "The dropout ratio for the projected features."}
|
|
)
|
|
hidden_dropout: Optional[float] = field(
|
|
default=0.0,
|
|
metadata={
|
|
"help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
|
|
},
|
|
)
|
|
final_dropout: Optional[float] = field(
|
|
default=0.0,
|
|
metadata={"help": "The dropout probability for the final projection layer."},
|
|
)
|
|
mask_time_prob: Optional[float] = field(
|
|
default=0.05,
|
|
metadata={
|
|
"help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
|
|
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
|
|
"vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``."
|
|
},
|
|
)
|
|
layerdrop: Optional[float] = field(default=0.0, metadata={"help": "The LayerDrop probability."})
|
|
ctc_loss_reduction: Optional[str] = field(
|
|
default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class DataTrainingArguments:
|
|
"""
|
|
Arguments pertaining to what data we are going to input our model for training and eval.
|
|
|
|
Using `HfArgumentParser` we can turn this class
|
|
into argparse arguments to be able to specify them on
|
|
the command line.
|
|
"""
|
|
|
|
dataset_name: str = field(
|
|
metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
|
)
|
|
dataset_config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
|
)
|
|
train_split_name: Optional[str] = field(
|
|
default="train+validation",
|
|
metadata={
|
|
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
|
},
|
|
)
|
|
eval_split_name: Optional[str] = field(
|
|
default="test",
|
|
metadata={
|
|
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
|
},
|
|
)
|
|
audio_column_name: Optional[str] = field(
|
|
default="audio",
|
|
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
|
|
)
|
|
text_column_name: Optional[str] = field(
|
|
default="text",
|
|
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
|
|
)
|
|
overwrite_cache: bool = field(
|
|
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
|
|
)
|
|
preprocessing_num_workers: Optional[int] = field(
|
|
default=None,
|
|
metadata={"help": "The number of processes to use for the preprocessing."},
|
|
)
|
|
max_train_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
|
"value if set."
|
|
},
|
|
)
|
|
max_eval_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
|
|
"value if set."
|
|
},
|
|
)
|
|
chars_to_ignore: Optional[List[str]] = list_field(
|
|
default=None,
|
|
metadata={"help": "A list of characters to remove from the transcripts."},
|
|
)
|
|
max_duration_in_seconds: Optional[float] = field(
|
|
default=20.0,
|
|
metadata={
|
|
"help": "Truncate audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
|
|
},
|
|
)
|
|
min_duration_in_seconds: Optional[float] = field(
|
|
default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
|
|
)
|
|
preprocessing_only: Optional[bool] = field(
|
|
default=False,
|
|
metadata={
|
|
"help": "Whether to only do data preprocessing and skip training. "
|
|
"This is especially useful when data preprocessing errors out in distributed training due to timeout. "
|
|
"In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
|
|
"so that the cached datasets can consequently be loaded in distributed training"
|
|
},
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class DataCollatorCTCWithPadding:
|
|
"""
|
|
Data collator that will dynamically pad the inputs received.
|
|
Args:
|
|
processor (:class:`~transformers.Wav2Vec2Processor`)
|
|
The processor used for proccessing the data.
|
|
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
|
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
|
among:
|
|
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
|
sequence if provided).
|
|
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
|
maximum acceptable input length for the model if that argument is not provided.
|
|
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
|
different lengths).
|
|
max_length (:obj:`int`, `optional`):
|
|
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
|
|
max_length_labels (:obj:`int`, `optional`):
|
|
Maximum length of the ``labels`` returned list and optionally padding length (see above).
|
|
pad_to_multiple_of (:obj:`int`, `optional`):
|
|
If set will pad the sequence to a multiple of the provided value.
|
|
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
|
7.5 (Volta).
|
|
"""
|
|
|
|
processor: Wav2Vec2Processor
|
|
padding: Union[bool, str] = "longest"
|
|
pad_to_multiple_of: Optional[int] = None
|
|
pad_to_multiple_of_labels: Optional[int] = None
|
|
|
|
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
|
# split inputs and labels since they have to be of different lenghts and need
|
|
# different padding methods
|
|
input_features = [{"input_values": feature["input_values"]} for feature in features]
|
|
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
|
|
|
batch = self.processor.pad(
|
|
input_features,
|
|
padding=self.padding,
|
|
pad_to_multiple_of=self.pad_to_multiple_of,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
with self.processor.as_target_processor():
|
|
labels_batch = self.processor.pad(
|
|
label_features,
|
|
padding=self.padding,
|
|
pad_to_multiple_of=self.pad_to_multiple_of_labels,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
# replace padding with -100 to ignore loss correctly
|
|
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
|
|
|
|
batch["labels"] = labels
|
|
|
|
return batch
|
|
|
|
|
|
def create_vocabulary_from_data(datasets: DatasetDict):
|
|
# Given training and test labels create vocabulary
|
|
def extract_all_chars(batch):
|
|
all_text = " ".join(batch["target_text"])
|
|
vocab = list(set(all_text))
|
|
return {"vocab": [vocab], "all_text": [all_text]}
|
|
|
|
vocabs = datasets.map(
|
|
extract_all_chars,
|
|
batched=True,
|
|
batch_size=-1,
|
|
keep_in_memory=True,
|
|
remove_columns=datasets["train"].column_names,
|
|
)
|
|
|
|
# take union of all unique characters in each dataset
|
|
vocab_set = functools.reduce(
|
|
lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
|
|
)
|
|
|
|
vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
|
|
|
|
# replace white space with delimiter token
|
|
vocab_dict["|"] = vocab_dict[" "]
|
|
del vocab_dict[" "]
|
|
|
|
# add unk and pad token
|
|
vocab_dict["[UNK]"] = len(vocab_dict)
|
|
vocab_dict["[PAD]"] = len(vocab_dict)
|
|
|
|
return vocab_dict
|
|
|
|
|
|
def main():
|
|
# See all possible arguments in src/transformers/training_args.py
|
|
# or by passing the --help flag to this script.
|
|
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
|
# If we pass only one argument to the script and it's the path to a json file,
|
|
# let's parse it to get our arguments.
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
|
else:
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
|
|
# Detecting last checkpoint.
|
|
last_checkpoint = None
|
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
|
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
|
raise ValueError(
|
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
|
"Use --overwrite_output_dir to overcome."
|
|
)
|
|
elif last_checkpoint is not None:
|
|
logger.info(
|
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
|
)
|
|
|
|
# Setup logging
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
handlers=[logging.StreamHandler(sys.stdout)],
|
|
)
|
|
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
|
|
|
|
# Log on each process the small summary:
|
|
logger.warning(
|
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
|
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
|
)
|
|
# Set the verbosity to info of the Transformers logger (on main process only):
|
|
if is_main_process(training_args.local_rank):
|
|
transformers.utils.logging.set_verbosity_info()
|
|
logger.info("Training/evaluation parameters %s", training_args)
|
|
|
|
# Set seed before initializing model.
|
|
set_seed(training_args.seed)
|
|
|
|
# 1. First, let's load the dataset
|
|
raw_datasets = DatasetDict()
|
|
raw_datasets["train"] = load_dataset(
|
|
data_args.dataset_name, data_args.dataset_config_name, split=data_args.train_split_name
|
|
)
|
|
raw_datasets["eval"] = load_dataset(
|
|
data_args.dataset_name, data_args.dataset_config_name, split=data_args.eval_split_name
|
|
)
|
|
|
|
if data_args.audio_column_name not in raw_datasets["train"].column_names:
|
|
raise ValueError(
|
|
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
|
|
"Make sure to set `--audio_column_name` to the correct audio column - one of "
|
|
f"{', '.join(raw_datasets['train'].column_names)}."
|
|
)
|
|
|
|
if data_args.text_column_name not in raw_datasets["train"].column_names:
|
|
raise ValueError(
|
|
f"--text_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. "
|
|
"Make sure to set `--text_column_name` to the correct text column - one of "
|
|
f"{', '.join(raw_datasets['train'].column_names)}."
|
|
)
|
|
|
|
# prepare dataset
|
|
if data_args.max_train_samples is not None:
|
|
raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
|
|
|
|
if data_args.max_eval_samples is not None:
|
|
raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
|
|
|
|
# 2. We remove some special characters from the datasets
|
|
# that make training complicated and do not help in transcribing the speech
|
|
# E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
|
|
# that could be easily picked up by the model
|
|
|
|
chars_to_ignore_regex = (
|
|
f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
|
|
)
|
|
|
|
def remove_special_characters(batch):
|
|
if chars_to_ignore_regex is not None:
|
|
batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[data_args.text_column_name]).lower() + " "
|
|
else:
|
|
batch["target_text"] = batch[data_args.text_column_name].lower() + " "
|
|
return batch
|
|
|
|
with training_args.main_process_first(desc="dataset map special characters removal"):
|
|
raw_datasets = raw_datasets.map(
|
|
remove_special_characters,
|
|
remove_columns=[data_args.text_column_name],
|
|
desc="remove special characters from datasets",
|
|
)
|
|
|
|
# 3. Next, we create the vocabulary of the model by extracting all unique characters from
|
|
# the training and evaluation datasets
|
|
# We need to make sure that only first rank saves vocabulary
|
|
# make sure all processes wait until vocab is created
|
|
|
|
with training_args.main_process_first(desc="dataset map vocabulary creation"):
|
|
vocab_dict = create_vocabulary_from_data(raw_datasets)
|
|
|
|
vocab_file = os.path.join(training_args.output_dir, "vocab.json")
|
|
|
|
# save vocab dict to be loaded into tokenizer
|
|
os.makedirs(training_args.output_dir, exist_ok=True)
|
|
if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
|
|
os.remove(vocab_file)
|
|
|
|
if not os.path.isfile(vocab_file):
|
|
with open(vocab_file, "w") as vocab_file:
|
|
json.dump(vocab_dict, vocab_file)
|
|
|
|
# 4. Now we can instantiate the configuration, feature extractor, tokenizer and model
|
|
# Note for distributed training, the .from_pretrained methods guarantee that only
|
|
# one local process can concurrently download model & vocab.
|
|
|
|
# load config
|
|
config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
|
|
|
|
# load feature_extractor, tokenizer and create processor
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
training_args.output_dir,
|
|
tokenizer_type=config.model_type,
|
|
unk_token="[UNK]",
|
|
pad_token="[PAD]",
|
|
word_delimiter_token="|",
|
|
)
|
|
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
|
model_args.model_name_or_path, cache_dir=model_args.cache_dir
|
|
)
|
|
processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)
|
|
|
|
# adapt config
|
|
config.update(
|
|
{
|
|
"feat_proj_dropout": model_args.feat_proj_dropout,
|
|
"attention_dropout": model_args.attention_dropout,
|
|
"hidden_dropout": model_args.hidden_dropout,
|
|
"final_dropout": model_args.final_dropout,
|
|
"mask_time_prob": model_args.mask_time_prob,
|
|
"gradient_checkpointing": training_args.gradient_checkpointing,
|
|
"layerdrop": model_args.layerdrop,
|
|
"ctc_loss_reduction": model_args.ctc_loss_reduction,
|
|
"pad_token_id": processor.tokenizer.pad_token_id,
|
|
"vocab_size": len(processor.tokenizer),
|
|
"activation_dropout": model_args.activation_dropout,
|
|
}
|
|
)
|
|
|
|
# create model
|
|
model = AutoModelForCTC.from_pretrained(
|
|
model_args.model_name_or_path, cache_dir=model_args.cache_dir, config=config
|
|
)
|
|
|
|
# freeze encoder
|
|
if model_args.freeze_feature_extractor:
|
|
model.freeze_feature_extractor()
|
|
|
|
# 5. Now we preprocess the datasets including loading the audio, resampling and normalization
|
|
# Thankfully, `datasets` takes care of automatically loading and resampling the audio,
|
|
# so that we just need to set the correct target sampling rate and normalize the input
|
|
# via the `feature_extractor`
|
|
|
|
# make sure that dataset decodes audio with correct sampling rate
|
|
raw_datasets = raw_datasets.cast_column(
|
|
data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
|
|
)
|
|
|
|
# derive max & min input length for sample rate & max duration
|
|
max_input_length = data_args.max_duration_in_seconds * processor.feature_extractor.sampling_rate
|
|
min_input_length = data_args.min_duration_in_seconds * processor.feature_extractor.sampling_rate
|
|
|
|
# Preprocessing the datasets.
|
|
# We need to read the audio files as arrays and tokenize the targets.
|
|
def prepare_dataset(batch):
|
|
# load audio
|
|
sample = batch[data_args.audio_column_name]
|
|
|
|
batch["input_values"] = processor(
|
|
sample["array"], sampling_rate=sample["sampling_rate"], truncate=True, max_length=max_input_length
|
|
).input_values[0]
|
|
batch["input_length"] = len(batch["input_values"])
|
|
|
|
# Setup the processor for targets
|
|
with processor.as_target_processor():
|
|
batch["labels"] = processor(batch["target_text"]).input_ids
|
|
return batch
|
|
|
|
with training_args.main_process_first(desc="dataset map preprocessing"):
|
|
vectorized_datasets = raw_datasets.map(
|
|
prepare_dataset,
|
|
remove_columns=raw_datasets["train"].column_names,
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
desc="preprocess datasets",
|
|
)
|
|
|
|
if min_input_length > 0.0:
|
|
# filter data that is shorter than min_input_length
|
|
vectorized_datasets = vectorized_datasets.filter(
|
|
lambda x: x > min_input_length,
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
input_columns=["input_length"],
|
|
)
|
|
|
|
vectorized_datasets = vectorized_datasets.remove_columns("input_length")
|
|
|
|
# 6. Next, we can prepare the training.
|
|
# Let's use word error rate (WER) as our evaluation metric,
|
|
# instantiate a data collator and the trainer
|
|
|
|
# Define Metric during training
|
|
wer_metric = load_metric("wer")
|
|
|
|
# for large datasets it is advised to run the preprocessing on a
|
|
# single machine first with ``args.preprocessing_only`` since there will mostly likely
|
|
# be a timeout when running the script in distributed mode.
|
|
# In a second step ``args.preprocessing_only`` can then be set to `False` to load the
|
|
# cached dataset
|
|
if data_args.preprocessing_only:
|
|
logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
|
|
return
|
|
|
|
def compute_metrics(pred):
|
|
pred_logits = pred.predictions
|
|
pred_ids = np.argmax(pred_logits, axis=-1)
|
|
|
|
pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id
|
|
|
|
pred_str = processor.batch_decode(pred_ids)
|
|
# we do not want to group tokens when computing the metrics
|
|
label_str = processor.batch_decode(pred.label_ids, group_tokens=False)
|
|
|
|
wer = wer_metric.compute(predictions=pred_str, references=label_str)
|
|
|
|
return {"wer": wer}
|
|
|
|
# Instantiate custom data collator
|
|
data_collator = DataCollatorCTCWithPadding(processor=processor)
|
|
|
|
# Initialize Trainer
|
|
trainer = Trainer(
|
|
model=model,
|
|
data_collator=data_collator,
|
|
args=training_args,
|
|
compute_metrics=compute_metrics,
|
|
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
|
|
eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
|
|
tokenizer=processor.feature_extractor,
|
|
)
|
|
|
|
# 7. Finally, we can start training
|
|
|
|
# Training
|
|
if training_args.do_train:
|
|
|
|
# use last checkpoint if exist
|
|
if last_checkpoint is not None:
|
|
checkpoint = last_checkpoint
|
|
elif os.path.isdir(model_args.model_name_or_path):
|
|
checkpoint = model_args.model_name_or_path
|
|
else:
|
|
checkpoint = None
|
|
|
|
# Save the feature_extractor and the tokenizer
|
|
if is_main_process(training_args.local_rank):
|
|
processor.save_pretrained(training_args.output_dir)
|
|
|
|
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
|
trainer.save_model()
|
|
|
|
metrics = train_result.metrics
|
|
max_train_samples = (
|
|
data_args.max_train_samples
|
|
if data_args.max_train_samples is not None
|
|
else len(vectorized_datasets["train"])
|
|
)
|
|
metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
|
|
|
|
trainer.log_metrics("train", metrics)
|
|
trainer.save_metrics("train", metrics)
|
|
trainer.save_state()
|
|
|
|
# Evaluation
|
|
results = {}
|
|
if training_args.do_eval:
|
|
logger.info("*** Evaluate ***")
|
|
metrics = trainer.evaluate()
|
|
max_eval_samples = (
|
|
data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
|
|
)
|
|
metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
|
|
|
|
trainer.log_metrics("eval", metrics)
|
|
trainer.save_metrics("eval", metrics)
|
|
|
|
# Write model card and (optionally) push to hub
|
|
kwargs = {
|
|
"finetuned_from": model_args.model_name_or_path,
|
|
"tasks": "speech-recognition",
|
|
"tags": ["automatic-speech-recognition", data_args.dataset_name],
|
|
"dataset_args": f"Config: {data_args.dataset_config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
|
|
"dataset": f"{data_args.dataset_name.upper()} - {data_args.dataset_config_name.upper()}",
|
|
}
|
|
if "common_voice" in data_args.dataset_name:
|
|
kwargs["language"] = data_args.dataset_config_name
|
|
|
|
if training_args.push_to_hub:
|
|
trainer.push_to_hub(**kwargs)
|
|
else:
|
|
trainer.create_model_card(**kwargs)
|
|
|
|
return results
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|