transformers/tests/models/llava/test_processor_llava.py
Raushan Turganbay db72894b48
Chat template: save and load correctly for processors (#33462)
* fix

* add tests

* fix tests

* Update tests/models/llava/test_processor_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix

* fix tests

* update tests

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-09-18 13:00:44 +02:00

122 lines
4.7 KiB
Python

# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import shutil
import tempfile
import unittest
from transformers import AutoProcessor, AutoTokenizer, LlamaTokenizerFast, LlavaProcessor
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_vision_available
from ...test_processing_common import ProcessorTesterMixin
if is_vision_available():
from transformers import CLIPImageProcessor
@require_vision
class LlavaProcessorTest(ProcessorTesterMixin, unittest.TestCase):
processor_class = LlavaProcessor
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
image_processor = CLIPImageProcessor(do_center_crop=False)
tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b")
processor_kwargs = self.prepare_processor_dict()
processor = LlavaProcessor(image_processor, tokenizer, **processor_kwargs)
processor.save_pretrained(self.tmpdirname)
def get_tokenizer(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer
def get_image_processor(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def prepare_processor_dict(self):
return {"chat_template": "dummy_template"}
@unittest.skip(
"Skip because the model has no processor kwargs except for chat template and"
"chat template is saved as a separate file. Stop skipping this test when the processor"
"has new kwargs saved in config file."
)
def test_processor_to_json_string(self):
pass
def test_chat_template_is_saved(self):
processor_loaded = self.processor_class.from_pretrained(self.tmpdirname)
processor_dict_loaded = json.loads(processor_loaded.to_json_string())
# chat templates aren't serialized to json in processors
self.assertFalse("chat_template" in processor_dict_loaded.keys())
# they have to be saved as separate file and loaded back from that file
# so we check if the same template is loaded
processor_dict = self.prepare_processor_dict()
self.assertTrue(processor_loaded.chat_template == processor_dict.get("chat_template", None))
def test_can_load_various_tokenizers(self):
for checkpoint in ["Intel/llava-gemma-2b", "llava-hf/llava-1.5-7b-hf"]:
processor = LlavaProcessor.from_pretrained(checkpoint)
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
self.assertEqual(processor.tokenizer.__class__, tokenizer.__class__)
def test_chat_template(self):
processor = LlavaProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")
expected_prompt = "USER: <image>\nWhat is shown in this image? ASSISTANT:"
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
]
formatted_prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
self.assertEqual(expected_prompt, formatted_prompt)
@require_torch
@require_vision
def test_unstructured_kwargs_batched(self):
if "image_processor" not in self.processor_class.attributes:
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
image_processor = self.get_component("image_processor")
tokenizer = self.get_component("tokenizer")
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
self.skip_processor_without_typed_kwargs(processor)
input_str = ["lower newer", "upper older longer string"]
image_input = self.prepare_image_inputs() * 2
inputs = processor(
images=image_input,
text=input_str,
return_tensors="pt",
size={"height": 214, "width": 214},
padding="longest",
max_length=76,
)
self.assertEqual(inputs["pixel_values"].shape[2], 214)
self.assertEqual(len(inputs["input_ids"][0]), 5)