mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-13 01:30:04 +06:00

* Added generic ONNX conversion script for PyTorch model. * WIP initial TF support. * TensorFlow/Keras ONNX export working. * Print framework version info * Add possibility to check the model is correctly loading on ONNX runtime. * Remove quantization option. * Specify ONNX opset version when exporting. * Formatting. * Remove unused imports. * Make functions more generally reusable from other part of the code. * isort happy. * flake happy * Export only feature-extraction for now * Correctly check inputs order / filter before export. * Removed task variable * Fix invalid args call in load_graph_from_args. * Fix invalid args call in convert. * Fix invalid args call in infer_shapes. * Raise exception and catch in caller function instead of exit. * Add 04-onnx-export.ipynb notebook * More WIP on the notebook * Remove unused imports * Simplify & remove unused constants. * Export with constant_folding in PyTorch * Let's try to put function args in the right order this time ... * Disable external_data_format temporary * ONNX notebook draft ready. * Updated notebooks charts + wording * Correct error while exporting last chart in notebook. * Adressing @LysandreJik comment. * Set ONNX opset to 11 as default value. * Set opset param mandatory * Added ONNX export unittests * Quality. * flake8 happy * Add keras2onnx dependency on extras["tf"] * Pin keras2onnx on github master to v1.6.5 * Second attempt. * Third attempt. * Use the right repo URL this time ... * Do the same for onnxconverter-common * Added keras2onnx and onnxconveter-common to 1.7.0 to supports TF2.2 * Correct commit hash. * Addressing PR review: Optimization are enabled by default. * Addressing PR review: small changes in the notebook * setup.py comment about keras2onnx versioning.
117 lines
4.7 KiB
Python
117 lines
4.7 KiB
Python
import unittest
|
|
from os import sep
|
|
from os.path import dirname, exists
|
|
from shutil import rmtree
|
|
|
|
from tests.utils import require_tf, require_torch
|
|
from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
|
|
from transformers.convert_graph_to_onnx import convert, ensure_valid_input, infer_shapes
|
|
|
|
|
|
class FuncContiguousArgs:
|
|
def forward(self, input_ids, token_type_ids, attention_mask):
|
|
return None
|
|
|
|
|
|
class FuncNonContiguousArgs:
|
|
def forward(self, input_ids, some_other_args, token_type_ids, attention_mask):
|
|
return None
|
|
|
|
|
|
class OnnxExportTestCase(unittest.TestCase):
|
|
MODEL_TO_TEST = ["bert-base-cased", "gpt2", "roberta-base"]
|
|
|
|
@require_tf
|
|
def test_export_tensorflow(self):
|
|
for model in OnnxExportTestCase.MODEL_TO_TEST:
|
|
self._test_export(model, "tf", 11)
|
|
|
|
@require_torch
|
|
def test_export_pytorch(self):
|
|
for model in OnnxExportTestCase.MODEL_TO_TEST:
|
|
self._test_export(model, "pt", 11)
|
|
|
|
def _test_export(self, model, framework, opset):
|
|
try:
|
|
# Compute path
|
|
path = "onnx" + sep + model + ".onnx"
|
|
|
|
# Remove folder if exists
|
|
if exists(dirname(path)):
|
|
rmtree(dirname(path))
|
|
|
|
# Export
|
|
convert(framework, model, path, opset)
|
|
except Exception as e:
|
|
self.fail(e)
|
|
|
|
@require_torch
|
|
def test_infer_dynamic_axis_pytorch(self):
|
|
"""
|
|
Validate the dynamic axis generated for each parameters are correct
|
|
"""
|
|
from transformers import BertModel
|
|
|
|
model = BertModel(BertConfig.from_pretrained("bert-base-cased"))
|
|
tokenizer = BertTokenizerFast.from_pretrained("bert-base-cased")
|
|
self._test_infer_dynamic_axis(model, tokenizer, "pt")
|
|
|
|
@require_tf
|
|
def test_infer_dynamic_axis_tf(self):
|
|
"""
|
|
Validate the dynamic axis generated for each parameters are correct
|
|
"""
|
|
from transformers import TFBertModel
|
|
|
|
model = TFBertModel(BertConfig.from_pretrained("bert-base-cased"))
|
|
tokenizer = BertTokenizerFast.from_pretrained("bert-base-cased")
|
|
self._test_infer_dynamic_axis(model, tokenizer, "tf")
|
|
|
|
def _test_infer_dynamic_axis(self, model, tokenizer, framework):
|
|
nlp = FeatureExtractionPipeline(model, tokenizer)
|
|
|
|
variable_names = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"]
|
|
input_vars, output_vars, shapes, tokens = infer_shapes(nlp, framework)
|
|
|
|
# Assert all variables are present
|
|
self.assertEqual(len(shapes), len(variable_names))
|
|
self.assertTrue(all([var_name in shapes for var_name in variable_names]))
|
|
self.assertSequenceEqual(variable_names[:3], input_vars)
|
|
self.assertSequenceEqual(variable_names[3:], output_vars)
|
|
|
|
# Assert inputs are {0: batch, 1: sequence}
|
|
for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
|
|
self.assertDictEqual(shapes[var_name], {0: "batch", 1: "sequence"})
|
|
|
|
# Assert outputs are {0: batch, 1: sequence} and {0: batch}
|
|
self.assertDictEqual(shapes["output_0"], {0: "batch", 1: "sequence"})
|
|
self.assertDictEqual(shapes["output_1"], {0: "batch"})
|
|
|
|
def test_ensure_valid_input(self):
|
|
"""
|
|
Validate parameters are correctly exported
|
|
GPT2 has "past" parameter in the middle of input_ids, token_type_ids and attention_mask.
|
|
ONNX doesn't support export with a dictionary, only a tuple. Thus we need to ensure we remove
|
|
token_type_ids and attention_mask for now to not having a None tensor in the middle
|
|
"""
|
|
# All generated args are valid
|
|
input_names = ["input_ids", "attention_mask", "token_type_ids"]
|
|
tokens = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]}
|
|
inputs_args = ensure_valid_input(FuncContiguousArgs(), tokens, input_names)
|
|
|
|
# Should have exactly the same number of args (all are valid)
|
|
self.assertEqual(len(inputs_args), 3)
|
|
|
|
# Parameter should be reordered according to their respective place in the function:
|
|
# (input_ids, token_type_ids, attention_mask)
|
|
self.assertEqual(inputs_args, (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]))
|
|
|
|
# Generated args are interleaved with another args (for instance parameter "past" in GPT2)
|
|
inputs_args = ensure_valid_input(FuncNonContiguousArgs(), tokens, input_names)
|
|
|
|
# Should have exactly the one arg (all before the one not provided "some_other_args")
|
|
self.assertEqual(len(inputs_args), 1)
|
|
|
|
# Should have only "input_ids"
|
|
self.assertEqual(inputs_args[0], tokens["input_ids"])
|