transformers/docs/source/model_doc/xlnet.rst
Sylvain Gugger dabeb15292
Examples reorg (#11350)
* Base move

* Examples reorganization

* Update references

* Put back test data

* Move conftest

* More fixes

* Move test data to test fixtures

* Update path

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Address review comments and clean

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-04-21 11:11:20 -04:00

205 lines
8.1 KiB
ReStructuredText

..
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
XLNet
-----------------------------------------------------------------------------------------------------------------------
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The XLNet model was proposed in `XLNet: Generalized Autoregressive Pretraining for Language Understanding
<https://arxiv.org/abs/1906.08237>`_ by Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov,
Quoc V. Le. XLnet is an extension of the Transformer-XL model pre-trained using an autoregressive method to learn
bidirectional contexts by maximizing the expected likelihood over all permutations of the input sequence factorization
order.
The abstract from the paper is the following:
*With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves
better performance than pretraining approaches based on autoregressive language modeling. However, relying on
corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a
pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive
pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all
permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive
formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into
pretraining. Empirically, under comparable experiment settings, XLNet outperforms BERT on 20 tasks, often by a large
margin, including question answering, natural language inference, sentiment analysis, and document ranking.*
Tips:
- The specific attention pattern can be controlled at training and test time using the :obj:`perm_mask` input.
- Due to the difficulty of training a fully auto-regressive model over various factorization order, XLNet is pretrained
using only a sub-set of the output tokens as target which are selected with the :obj:`target_mapping` input.
- To use XLNet for sequential decoding (i.e. not in fully bi-directional setting), use the :obj:`perm_mask` and
:obj:`target_mapping` inputs to control the attention span and outputs (see examples in
`examples/pytorch/text-generation/run_generation.py`)
- XLNet is one of the few models that has no sequence length limit.
This model was contributed by `thomwolf <https://huggingface.co/thomwolf>`__. The original code can be found `here
<https://github.com/zihangdai/xlnet/>`__.
XLNetConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLNetConfig
:members:
XLNetTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLNetTokenizer
:members: build_inputs_with_special_tokens, get_special_tokens_mask,
create_token_type_ids_from_sequences, save_vocabulary
XLNetTokenizerFast
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLNetTokenizerFast
:members:
XLNet specific outputs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.models.xlnet.modeling_xlnet.XLNetModelOutput
:members:
.. autoclass:: transformers.models.xlnet.modeling_xlnet.XLNetLMHeadModelOutput
:members:
.. autoclass:: transformers.models.xlnet.modeling_xlnet.XLNetForSequenceClassificationOutput
:members:
.. autoclass:: transformers.models.xlnet.modeling_xlnet.XLNetForMultipleChoiceOutput
:members:
.. autoclass:: transformers.models.xlnet.modeling_xlnet.XLNetForTokenClassificationOutput
:members:
.. autoclass:: transformers.models.xlnet.modeling_xlnet.XLNetForQuestionAnsweringSimpleOutput
:members:
.. autoclass:: transformers.models.xlnet.modeling_xlnet.XLNetForQuestionAnsweringOutput
:members:
.. autoclass:: transformers.models.xlnet.modeling_tf_xlnet.TFXLNetModelOutput
:members:
.. autoclass:: transformers.models.xlnet.modeling_tf_xlnet.TFXLNetLMHeadModelOutput
:members:
.. autoclass:: transformers.models.xlnet.modeling_tf_xlnet.TFXLNetForSequenceClassificationOutput
:members:
.. autoclass:: transformers.models.xlnet.modeling_tf_xlnet.TFXLNetForMultipleChoiceOutput
:members:
.. autoclass:: transformers.models.xlnet.modeling_tf_xlnet.TFXLNetForTokenClassificationOutput
:members:
.. autoclass:: transformers.models.xlnet.modeling_tf_xlnet.TFXLNetForQuestionAnsweringSimpleOutput
:members:
XLNetModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLNetModel
:members: forward
XLNetLMHeadModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLNetLMHeadModel
:members: forward
XLNetForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLNetForSequenceClassification
:members: forward
XLNetForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLNetForMultipleChoice
:members: forward
XLNetForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLNetForTokenClassification
:members: forward
XLNetForQuestionAnsweringSimple
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLNetForQuestionAnsweringSimple
:members: forward
XLNetForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.XLNetForQuestionAnswering
:members: forward
TFXLNetModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFXLNetModel
:members: call
TFXLNetLMHeadModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFXLNetLMHeadModel
:members: call
TFXLNetForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFXLNetForSequenceClassification
:members: call
TFLNetForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFXLNetForMultipleChoice
:members: call
TFXLNetForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFXLNetForTokenClassification
:members: call
TFXLNetForQuestionAnsweringSimple
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFXLNetForQuestionAnsweringSimple
:members: call