mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-13 17:48:22 +06:00

* Result of black 23.1 * Update target to Python 3.7 * Switch flake8 to ruff * Configure isort * Configure isort * Apply isort with line limit * Put the right black version * adapt black in check copies * Fix copies
193 lines
6.9 KiB
Python
193 lines
6.9 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from transformers.testing_utils import require_torch, require_vision
|
|
from transformers.utils import is_torch_available, is_vision_available
|
|
|
|
from ...test_image_processing_common import ImageProcessingSavingTestMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import Swin2SRImageProcessor
|
|
from transformers.image_transforms import get_image_size
|
|
|
|
|
|
class Swin2SRImageProcessingTester(unittest.TestCase):
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=7,
|
|
num_channels=3,
|
|
image_size=18,
|
|
min_resolution=30,
|
|
max_resolution=400,
|
|
do_rescale=True,
|
|
rescale_factor=1 / 255,
|
|
do_pad=True,
|
|
pad_size=8,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.num_channels = num_channels
|
|
self.image_size = image_size
|
|
self.min_resolution = min_resolution
|
|
self.max_resolution = max_resolution
|
|
self.do_rescale = do_rescale
|
|
self.rescale_factor = rescale_factor
|
|
self.do_pad = do_pad
|
|
self.pad_size = pad_size
|
|
|
|
def prepare_image_processor_dict(self):
|
|
return {
|
|
"do_rescale": self.do_rescale,
|
|
"rescale_factor": self.rescale_factor,
|
|
"do_pad": self.do_pad,
|
|
"pad_size": self.pad_size,
|
|
}
|
|
|
|
def prepare_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
|
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
|
|
or a list of PyTorch tensors if one specifies torchify=True.
|
|
"""
|
|
|
|
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
|
|
|
|
if equal_resolution:
|
|
image_inputs = []
|
|
for i in range(self.batch_size):
|
|
image_inputs.append(
|
|
np.random.randint(
|
|
255, size=(self.num_channels, self.max_resolution, self.max_resolution), dtype=np.uint8
|
|
)
|
|
)
|
|
else:
|
|
image_inputs = []
|
|
for i in range(self.batch_size):
|
|
width, height = np.random.choice(np.arange(self.min_resolution, self.max_resolution), 2)
|
|
image_inputs.append(np.random.randint(255, size=(self.num_channels, width, height), dtype=np.uint8))
|
|
|
|
if not numpify and not torchify:
|
|
# PIL expects the channel dimension as last dimension
|
|
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
|
|
|
|
if torchify:
|
|
image_inputs = [torch.from_numpy(x) for x in image_inputs]
|
|
|
|
return image_inputs
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class Swin2SRImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
|
|
image_processing_class = Swin2SRImageProcessor if is_vision_available() else None
|
|
|
|
def setUp(self):
|
|
self.image_processor_tester = Swin2SRImageProcessingTester(self)
|
|
|
|
@property
|
|
def image_processor_dict(self):
|
|
return self.image_processor_tester.prepare_image_processor_dict()
|
|
|
|
def test_image_processor_properties(self):
|
|
image_processor = self.image_processing_class(**self.image_processor_dict)
|
|
self.assertTrue(hasattr(image_processor, "do_rescale"))
|
|
self.assertTrue(hasattr(image_processor, "rescale_factor"))
|
|
self.assertTrue(hasattr(image_processor, "do_pad"))
|
|
self.assertTrue(hasattr(image_processor, "pad_size"))
|
|
|
|
def test_batch_feature(self):
|
|
pass
|
|
|
|
def calculate_expected_size(self, image):
|
|
old_height, old_width = get_image_size(image)
|
|
size = self.image_processor_tester.pad_size
|
|
|
|
pad_height = (old_height // size + 1) * size - old_height
|
|
pad_width = (old_width // size + 1) * size - old_width
|
|
return old_height + pad_height, old_width + pad_width
|
|
|
|
def test_call_pil(self):
|
|
# Initialize image_processor
|
|
image_processor = self.image_processing_class(**self.image_processor_dict)
|
|
# create random PIL images
|
|
image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False)
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, Image.Image)
|
|
|
|
# Test not batched input
|
|
encoded_images = image_processor(image_inputs[0], return_tensors="pt").pixel_values
|
|
expected_height, expected_width = self.calculate_expected_size(np.array(image_inputs[0]))
|
|
self.assertEqual(
|
|
encoded_images.shape,
|
|
(
|
|
1,
|
|
self.image_processor_tester.num_channels,
|
|
expected_height,
|
|
expected_width,
|
|
),
|
|
)
|
|
|
|
def test_call_numpy(self):
|
|
# Initialize image_processor
|
|
image_processor = self.image_processing_class(**self.image_processor_dict)
|
|
# create random numpy tensors
|
|
image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False, numpify=True)
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, np.ndarray)
|
|
|
|
# Test not batched input
|
|
encoded_images = image_processor(image_inputs[0], return_tensors="pt").pixel_values
|
|
expected_height, expected_width = self.calculate_expected_size(image_inputs[0])
|
|
self.assertEqual(
|
|
encoded_images.shape,
|
|
(
|
|
1,
|
|
self.image_processor_tester.num_channels,
|
|
expected_height,
|
|
expected_width,
|
|
),
|
|
)
|
|
|
|
def test_call_pytorch(self):
|
|
# Initialize image_processor
|
|
image_processor = self.image_processing_class(**self.image_processor_dict)
|
|
# create random PyTorch tensors
|
|
image_inputs = self.image_processor_tester.prepare_inputs(equal_resolution=False, torchify=True)
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, torch.Tensor)
|
|
|
|
# Test not batched input
|
|
encoded_images = image_processor(image_inputs[0], return_tensors="pt").pixel_values
|
|
expected_height, expected_width = self.calculate_expected_size(image_inputs[0])
|
|
self.assertEqual(
|
|
encoded_images.shape,
|
|
(
|
|
1,
|
|
self.image_processor_tester.num_channels,
|
|
expected_height,
|
|
expected_width,
|
|
),
|
|
)
|