mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-14 18:18:24 +06:00

* configuration_squeezebert.py thin wrapper around bert tokenizer fix typos wip sb model code wip modeling_squeezebert.py. Next step is to get the multi-layer-output interface working set up squeezebert to use BertModelOutput when returning results. squeezebert documentation formatting allow head mask that is an array of [None, ..., None] docs docs cont'd path to vocab docs and pointers to cloud files (WIP) line length and indentation squeezebert model cards formatting of model cards untrack modeling_squeezebert_scratchpad.py update aws paths to vocab and config files get rid of stub of NSP code, and advise users to pretrain with mlm only fix rebase issues redo rebase of modeling_auto.py fix issues with code formatting more code format auto-fixes move squeezebert before bert in tokenization_auto.py and modeling_auto.py because squeezebert inherits from bert tests for squeezebert modeling and tokenization fix typo move squeezebert before bert in modeling_auto.py to fix inheritance problem disable test_head_masking, since squeezebert doesn't yet implement head masking fix issues exposed by the test_modeling_squeezebert.py fix an issue exposed by test_tokenization_squeezebert.py fix issue exposed by test_modeling_squeezebert.py auto generated code style improvement issue that we inherited from modeling_xxx.py: SqueezeBertForMaskedLM.forward() calls self.cls(), but there is no self.cls, and I think the goal was actually to call self.lm_head() update copyright resolve failing 'test_hidden_states_output' and remove unused encoder_hidden_states and encoder_attention_mask docs add integration test. rename squeezebert-mnli --> squeezebert/squeezebert-mnli autogenerated formatting tweaks integrate feedback from patrickvonplaten and sgugger to programming style and documentation strings * tiny change to order of imports
44 lines
1.7 KiB
Python
44 lines
1.7 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The SqueezeBert authors and The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
from transformers.testing_utils import slow
|
|
from transformers.tokenization_squeezebert import SqueezeBertTokenizer, SqueezeBertTokenizerFast
|
|
|
|
from .test_tokenization_bert import BertTokenizationTest
|
|
|
|
|
|
class SqueezeBertTokenizationTest(BertTokenizationTest):
|
|
|
|
tokenizer_class = SqueezeBertTokenizer
|
|
|
|
def get_rust_tokenizer(self, **kwargs):
|
|
return SqueezeBertTokenizerFast.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
@slow
|
|
def test_sequence_builders(self):
|
|
tokenizer = SqueezeBertTokenizer.from_pretrained("squeezebert/squeezebert-mnli-headless")
|
|
|
|
text = tokenizer.encode("sequence builders", add_special_tokens=False)
|
|
text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False)
|
|
|
|
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
|
|
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
|
|
|
|
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
|
|
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_2 + [
|
|
tokenizer.sep_token_id
|
|
]
|