transformers/examples/seq2seq/test_finetune_trainer.py
Sam Shleifer 96e47d9229
[cleanup] assign todos, faster bart-cnn test (#7835)
* 2 beam output

* unassign/remove TODOs

* remove one more
2020-10-16 03:11:18 -04:00

107 lines
3.0 KiB
Python

import os
import sys
import tempfile
from unittest.mock import patch
from transformers.testing_utils import slow
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import set_seed
from .finetune_trainer import main
from .test_seq2seq_examples import MBART_TINY
set_seed(42)
MARIAN_MODEL = "sshleifer/student_marian_en_ro_6_1"
def test_finetune_trainer():
output_dir = run_trainer(1, "12", MBART_TINY, 1)
logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
eval_metrics = [log for log in logs if "eval_loss" in log.keys()]
first_step_stats = eval_metrics[0]
assert "eval_bleu" in first_step_stats
@slow
def test_finetune_trainer_slow():
# There is a missing call to __init__process_group somewhere
output_dir = run_trainer(eval_steps=2, max_len="128", model_name=MARIAN_MODEL, num_train_epochs=3)
# Check metrics
logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
eval_metrics = [log for log in logs if "eval_loss" in log.keys()]
first_step_stats = eval_metrics[0]
last_step_stats = eval_metrics[-1]
assert first_step_stats["eval_bleu"] < last_step_stats["eval_bleu"] # model learned nothing
assert isinstance(last_step_stats["eval_bleu"], float)
# test if do_predict saves generations and metrics
contents = os.listdir(output_dir)
contents = {os.path.basename(p) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.json" in contents
def run_trainer(eval_steps: int, max_len: str, model_name: str, num_train_epochs: int):
data_dir = "examples/seq2seq/test_data/wmt_en_ro"
output_dir = tempfile.mkdtemp(prefix="test_output")
argv = [
"--model_name_or_path",
model_name,
"--data_dir",
data_dir,
"--output_dir",
output_dir,
"--overwrite_output_dir",
"--n_train",
"8",
"--n_val",
"8",
"--max_source_length",
max_len,
"--max_target_length",
max_len,
"--val_max_target_length",
max_len,
"--do_train",
"--do_eval",
"--do_predict",
"--num_train_epochs",
str(num_train_epochs),
"--per_device_train_batch_size",
"4",
"--per_device_eval_batch_size",
"4",
"--learning_rate",
"3e-4",
"--warmup_steps",
"8",
"--evaluate_during_training",
"--predict_with_generate",
"--logging_steps",
0,
"--save_steps",
str(eval_steps),
"--eval_steps",
str(eval_steps),
"--sortish_sampler",
"--label_smoothing",
"0.1",
# "--eval_beams",
# "2",
"--adafactor",
"--task",
"translation",
"--tgt_lang",
"ro_RO",
"--src_lang",
"en_XX",
]
testargs = ["finetune_trainer.py"] + argv
with patch.object(sys, "argv", testargs):
main()
return output_dir