mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-14 01:58:22 +06:00
350 lines
13 KiB
Python
350 lines
13 KiB
Python
import logging
|
|
import os
|
|
import sys
|
|
from dataclasses import dataclass, field
|
|
from typing import Optional
|
|
|
|
from seq2seq_trainer import Seq2SeqTrainer, arg_to_scheduler_choices
|
|
from transformers import (
|
|
AutoConfig,
|
|
AutoModelForSeq2SeqLM,
|
|
AutoTokenizer,
|
|
HfArgumentParser,
|
|
MBartTokenizer,
|
|
TrainingArguments,
|
|
set_seed,
|
|
)
|
|
from transformers.trainer_utils import EvaluationStrategy
|
|
from utils import (
|
|
LegacySeq2SeqDataset,
|
|
Seq2SeqDataCollator,
|
|
Seq2SeqDataset,
|
|
assert_all_frozen,
|
|
build_compute_metrics_fn,
|
|
freeze_embeds,
|
|
freeze_params,
|
|
lmap,
|
|
save_json,
|
|
use_task_specific_params,
|
|
write_txt_file,
|
|
)
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class Seq2SeqTrainingArguments(TrainingArguments):
|
|
"""
|
|
Parameters:
|
|
label_smoothing (:obj:`float`, `optional`, defaults to 0):
|
|
The label smoothing epsilon to apply (if not zero).
|
|
sortish_sampler (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
|
Whether to SortishSamler or not. It sorts the inputs according to lenghts in-order to minimizing the padding size.
|
|
predict_with_generate (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
|
Whether to use generate to calculate generative metrics (ROUGE, BLEU).
|
|
"""
|
|
|
|
label_smoothing: Optional[float] = field(
|
|
default=0.0, metadata={"help": "The label smoothing epsilon to apply (if not zero)."}
|
|
)
|
|
sortish_sampler: bool = field(default=False, metadata={"help": "Whether to SortishSamler or not."})
|
|
predict_with_generate: bool = field(
|
|
default=False, metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."}
|
|
)
|
|
adafactor: bool = field(default=False, metadata={"help": "whether to use adafactor"})
|
|
encoder_layerdrop: Optional[float] = field(
|
|
default=None, metadata={"help": "Encoder layer dropout probability. Goes into model.config."}
|
|
)
|
|
decoder_layerdrop: Optional[float] = field(
|
|
default=None, metadata={"help": "Decoder layer dropout probability. Goes into model.config."}
|
|
)
|
|
dropout: Optional[float] = field(default=None, metadata={"help": "Dropout probability. Goes into model.config."})
|
|
attention_dropout: Optional[float] = field(
|
|
default=None, metadata={"help": "Attention dropout probability. Goes into model.config."}
|
|
)
|
|
lr_scheduler: Optional[str] = field(
|
|
default="linear", metadata={"help": f"Which lr scheduler to use. Selected in {arg_to_scheduler_choices}"}
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class ModelArguments:
|
|
"""
|
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
|
"""
|
|
|
|
model_name_or_path: str = field(
|
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
|
)
|
|
config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
|
)
|
|
tokenizer_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
|
)
|
|
cache_dir: Optional[str] = field(
|
|
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
|
|
)
|
|
freeze_encoder: bool = field(default=False, metadata={"help": "Whether tp freeze the encoder."})
|
|
freeze_embeds: bool = field(default=False, metadata={"help": "Whether to freeze the embeddings."})
|
|
|
|
|
|
@dataclass
|
|
class DataTrainingArguments:
|
|
"""
|
|
Arguments pertaining to what data we are going to input our model for training and eval.
|
|
"""
|
|
|
|
data_dir: str = field(
|
|
metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."}
|
|
)
|
|
task: Optional[str] = field(
|
|
default="summarization",
|
|
metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"},
|
|
)
|
|
max_source_length: Optional[int] = field(
|
|
default=1024,
|
|
metadata={
|
|
"help": "The maximum total input sequence length after tokenization. Sequences longer "
|
|
"than this will be truncated, sequences shorter will be padded."
|
|
},
|
|
)
|
|
max_target_length: Optional[int] = field(
|
|
default=128,
|
|
metadata={
|
|
"help": "The maximum total sequence length for target text after tokenization. Sequences longer "
|
|
"than this will be truncated, sequences shorter will be padded."
|
|
},
|
|
)
|
|
val_max_target_length: Optional[int] = field(
|
|
default=142,
|
|
metadata={
|
|
"help": "The maximum total sequence length for validation target text after tokenization. Sequences longer "
|
|
"than this will be truncated, sequences shorter will be padded."
|
|
},
|
|
)
|
|
test_max_target_length: Optional[int] = field(
|
|
default=142,
|
|
metadata={
|
|
"help": "The maximum total sequence length for test target text after tokenization. Sequences longer "
|
|
"than this will be truncated, sequences shorter will be padded."
|
|
},
|
|
)
|
|
n_train: Optional[int] = field(default=-1, metadata={"help": "# training examples. -1 means use all."})
|
|
n_val: Optional[int] = field(default=-1, metadata={"help": "# validation examples. -1 means use all."})
|
|
n_test: Optional[int] = field(default=-1, metadata={"help": "# test examples. -1 means use all."})
|
|
src_lang: Optional[str] = field(default=None, metadata={"help": "Source language id for translation."})
|
|
tgt_lang: Optional[str] = field(default=None, metadata={"help": "Target language id for translation."})
|
|
eval_beams: Optional[int] = field(default=None, metadata={"help": "# num_beams to use for evaluation."})
|
|
|
|
|
|
def main():
|
|
# See all possible arguments in src/transformers/training_args.py
|
|
# or by passing the --help flag to this script.
|
|
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
|
|
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
|
# If we pass only one argument to the script and it's the path to a json file,
|
|
# let's parse it to get our arguments.
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
|
else:
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
|
|
if (
|
|
os.path.exists(training_args.output_dir)
|
|
and os.listdir(training_args.output_dir)
|
|
and training_args.do_train
|
|
and not training_args.overwrite_output_dir
|
|
):
|
|
raise ValueError(
|
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
|
|
)
|
|
|
|
# Setup logging
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
|
|
)
|
|
logger.warning(
|
|
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
|
|
training_args.local_rank,
|
|
training_args.device,
|
|
training_args.n_gpu,
|
|
bool(training_args.local_rank != -1),
|
|
training_args.fp16,
|
|
)
|
|
logger.info("Training/evaluation parameters %s", training_args)
|
|
|
|
# Set seed
|
|
set_seed(training_args.seed)
|
|
|
|
# Load pretrained model and tokenizer
|
|
#
|
|
# Distributed training:
|
|
# The .from_pretrained methods guarantee that only one local process can concurrently
|
|
# download model & vocab.
|
|
|
|
config = AutoConfig.from_pretrained(
|
|
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
|
cache_dir=model_args.cache_dir,
|
|
)
|
|
|
|
extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout")
|
|
for p in extra_model_params:
|
|
if getattr(training_args, p, None):
|
|
assert hasattr(config, p), f"({config.__class__.__name__}) doesn't have a `{p}` attribute"
|
|
setattr(config, p, getattr(training_args, p))
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
|
cache_dir=model_args.cache_dir,
|
|
)
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
from_tf=".ckpt" in model_args.model_name_or_path,
|
|
config=config,
|
|
cache_dir=model_args.cache_dir,
|
|
)
|
|
|
|
# use task specific params
|
|
use_task_specific_params(model, data_args.task)
|
|
|
|
# set num_beams for evaluation
|
|
if data_args.eval_beams is None:
|
|
data_args.eval_beams = model.config.num_beams
|
|
|
|
# set decoder_start_token_id for MBart
|
|
if model.config.decoder_start_token_id is None and isinstance(tokenizer, MBartTokenizer):
|
|
assert (
|
|
data_args.tgt_lang is not None and data_args.src_lang is not None
|
|
), "mBart requires --tgt_lang and --src_lang"
|
|
model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.tgt_lang]
|
|
|
|
if model_args.freeze_embeds:
|
|
freeze_embeds(model)
|
|
if model_args.freeze_encoder:
|
|
freeze_params(model.get_encoder())
|
|
assert_all_frozen(model.get_encoder())
|
|
|
|
dataset_class = Seq2SeqDataset if hasattr(tokenizer, "prepare_seq2seq_batch") else LegacySeq2SeqDataset
|
|
|
|
# Get datasets
|
|
train_dataset = (
|
|
dataset_class(
|
|
tokenizer,
|
|
type_path="train",
|
|
data_dir=data_args.data_dir,
|
|
n_obs=data_args.n_train,
|
|
max_target_length=data_args.max_target_length,
|
|
max_source_length=data_args.max_source_length,
|
|
prefix=model.config.prefix or "",
|
|
)
|
|
if training_args.do_train
|
|
else None
|
|
)
|
|
eval_dataset = (
|
|
dataset_class(
|
|
tokenizer,
|
|
type_path="val",
|
|
data_dir=data_args.data_dir,
|
|
n_obs=data_args.n_val,
|
|
max_target_length=data_args.val_max_target_length,
|
|
max_source_length=data_args.max_source_length,
|
|
prefix=model.config.prefix or "",
|
|
)
|
|
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
|
|
else None
|
|
)
|
|
test_dataset = (
|
|
dataset_class(
|
|
tokenizer,
|
|
type_path="test",
|
|
data_dir=data_args.data_dir,
|
|
n_obs=data_args.n_test,
|
|
max_target_length=data_args.test_max_target_length,
|
|
max_source_length=data_args.max_source_length,
|
|
prefix=model.config.prefix or "",
|
|
)
|
|
if training_args.do_predict
|
|
else None
|
|
)
|
|
|
|
# Initialize our Trainer
|
|
compute_metrics_fn = (
|
|
build_compute_metrics_fn(data_args.task, tokenizer) if training_args.predict_with_generate else None
|
|
)
|
|
trainer = Seq2SeqTrainer(
|
|
model=model,
|
|
config=config,
|
|
args=training_args,
|
|
train_dataset=train_dataset,
|
|
eval_dataset=eval_dataset,
|
|
data_collator=Seq2SeqDataCollator(tokenizer, data_args, training_args.tpu_num_cores),
|
|
compute_metrics=compute_metrics_fn,
|
|
data_args=data_args,
|
|
)
|
|
|
|
# Training
|
|
if training_args.do_train:
|
|
trainer.train(
|
|
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
|
|
)
|
|
trainer.save_model()
|
|
# For convenience, we also re-save the tokenizer to the same directory,
|
|
# so that you can share your model easily on huggingface.co/models =)
|
|
if trainer.is_world_process_zero():
|
|
trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json"))
|
|
tokenizer.save_pretrained(training_args.output_dir)
|
|
|
|
# Evaluation
|
|
eval_results = {}
|
|
if training_args.do_eval:
|
|
logger.info("*** Evaluate ***")
|
|
|
|
result = trainer.evaluate()
|
|
|
|
if trainer.is_world_process_zero():
|
|
logger.info("***** Eval results *****")
|
|
for key, value in result.items():
|
|
logger.info(" %s = %s", key, value)
|
|
save_json(result, os.path.join(training_args.output_dir, "eval_results.json"))
|
|
eval_results.update(result)
|
|
|
|
if training_args.do_predict:
|
|
logging.info("*** Test ***")
|
|
|
|
test_output = trainer.predict(test_dataset=test_dataset)
|
|
test_metrics = {k.replace("eval", "test"): v for k, v in test_output.metrics.items()}
|
|
|
|
if trainer.is_world_process_zero():
|
|
logger.info("***** Test results *****")
|
|
for key, value in test_metrics.items():
|
|
logger.info(" %s = %s", key, value)
|
|
|
|
save_json(test_metrics, os.path.join(training_args.output_dir, "test_results.json"))
|
|
eval_results.update(test_metrics)
|
|
|
|
if training_args.predict_with_generate:
|
|
test_preds = tokenizer.batch_decode(
|
|
test_output.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
|
|
)
|
|
test_preds = lmap(str.strip, test_preds)
|
|
write_txt_file(test_preds, os.path.join(training_args.output_dir, "test_generations.txt"))
|
|
|
|
if trainer.is_world_process_zero():
|
|
save_json(eval_results, "all_results.json")
|
|
return eval_results
|
|
|
|
|
|
def _mp_fn(index):
|
|
# For xla_spawn (TPUs)
|
|
main()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|