mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 21:00:08 +06:00

* add uniformized pixtral and kwargs * update doc * fix _validate_images_text_input_order * nit
306 lines
12 KiB
Python
306 lines
12 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import inspect
|
|
import json
|
|
import tempfile
|
|
|
|
|
|
try:
|
|
from typing import Unpack
|
|
except ImportError:
|
|
from typing_extensions import Unpack
|
|
|
|
import numpy as np
|
|
|
|
from transformers.models.auto.processing_auto import processor_class_from_name
|
|
from transformers.testing_utils import (
|
|
check_json_file_has_correct_format,
|
|
require_torch,
|
|
require_vision,
|
|
)
|
|
from transformers.utils import is_vision_available
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
|
|
def prepare_image_inputs():
|
|
"""This function prepares a list of PIL images"""
|
|
image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]
|
|
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
|
|
return image_inputs
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class ProcessorTesterMixin:
|
|
processor_class = None
|
|
|
|
def prepare_processor_dict(self):
|
|
return {}
|
|
|
|
def get_component(self, attribute, **kwargs):
|
|
assert attribute in self.processor_class.attributes
|
|
component_class_name = getattr(self.processor_class, f"{attribute}_class")
|
|
if isinstance(component_class_name, tuple):
|
|
component_class_name = component_class_name[0]
|
|
|
|
component_class = processor_class_from_name(component_class_name)
|
|
component = component_class.from_pretrained(self.tmpdirname, **kwargs) # noqa
|
|
if attribute == "tokenizer" and not component.pad_token:
|
|
component.pad_token = "[TEST_PAD]"
|
|
if component.pad_token_id is None:
|
|
component.pad_token_id = 0
|
|
|
|
return component
|
|
|
|
def prepare_components(self):
|
|
components = {}
|
|
for attribute in self.processor_class.attributes:
|
|
component = self.get_component(attribute)
|
|
components[attribute] = component
|
|
|
|
return components
|
|
|
|
def get_processor(self):
|
|
components = self.prepare_components()
|
|
processor = self.processor_class(**components, **self.prepare_processor_dict())
|
|
return processor
|
|
|
|
@require_vision
|
|
def prepare_image_inputs(self):
|
|
"""This function prepares a list of PIL images for testing"""
|
|
return prepare_image_inputs()
|
|
|
|
@require_vision
|
|
def prepare_video_inputs(self):
|
|
"""This function prepares a list of numpy videos."""
|
|
video_input = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)] * 8
|
|
image_inputs = [video_input] * 3 # batch-size=3
|
|
return image_inputs
|
|
|
|
def test_processor_to_json_string(self):
|
|
processor = self.get_processor()
|
|
obj = json.loads(processor.to_json_string())
|
|
for key, value in self.prepare_processor_dict().items():
|
|
self.assertEqual(obj[key], value)
|
|
self.assertEqual(getattr(processor, key, None), value)
|
|
|
|
def test_processor_from_and_save_pretrained(self):
|
|
processor_first = self.get_processor()
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
saved_files = processor_first.save_pretrained(tmpdirname)
|
|
if len(saved_files) > 0:
|
|
check_json_file_has_correct_format(saved_files[0])
|
|
processor_second = self.processor_class.from_pretrained(tmpdirname)
|
|
|
|
self.assertEqual(processor_second.to_dict(), processor_first.to_dict())
|
|
|
|
# These kwargs-related tests ensure that processors are correctly instantiated.
|
|
# they need to be applied only if an image_processor exists.
|
|
|
|
def skip_processor_without_typed_kwargs(self, processor):
|
|
# TODO this signature check is to test only uniformized processors.
|
|
# Once all are updated, remove it.
|
|
is_kwargs_typed_dict = False
|
|
call_signature = inspect.signature(processor.__call__)
|
|
for param in call_signature.parameters.values():
|
|
if param.kind == param.VAR_KEYWORD and param.annotation != param.empty:
|
|
is_kwargs_typed_dict = (
|
|
hasattr(param.annotation, "__origin__") and param.annotation.__origin__ == Unpack
|
|
)
|
|
if not is_kwargs_typed_dict:
|
|
self.skipTest(f"{self.processor_class} doesn't have typed kwargs.")
|
|
|
|
def test_tokenizer_defaults_preserved_by_kwargs(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
image_processor = self.get_component("image_processor")
|
|
tokenizer = self.get_component("tokenizer", max_length=117, padding="max_length")
|
|
|
|
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
inputs = processor(text=input_str, images=image_input, return_tensors="pt")
|
|
self.assertEqual(len(inputs["input_ids"][0]), 117)
|
|
|
|
def test_image_processor_defaults_preserved_by_image_kwargs(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
image_processor = self.get_component("image_processor", size=(234, 234))
|
|
tokenizer = self.get_component("tokenizer", max_length=117, padding="max_length")
|
|
|
|
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
inputs = processor(text=input_str, images=image_input)
|
|
self.assertEqual(len(inputs["pixel_values"][0][0]), 234)
|
|
|
|
def test_kwargs_overrides_default_tokenizer_kwargs(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
image_processor = self.get_component("image_processor")
|
|
tokenizer = self.get_component("tokenizer", padding="longest")
|
|
|
|
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
inputs = processor(
|
|
text=input_str, images=image_input, return_tensors="pt", max_length=112, padding="max_length"
|
|
)
|
|
self.assertEqual(len(inputs["input_ids"][0]), 112)
|
|
|
|
def test_kwargs_overrides_default_image_processor_kwargs(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
image_processor = self.get_component("image_processor", size=(234, 234))
|
|
tokenizer = self.get_component("tokenizer", max_length=117, padding="max_length")
|
|
|
|
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
inputs = processor(text=input_str, images=image_input, size=[224, 224])
|
|
self.assertEqual(len(inputs["pixel_values"][0][0]), 224)
|
|
|
|
def test_unstructured_kwargs(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
image_processor = self.get_component("image_processor")
|
|
tokenizer = self.get_component("tokenizer")
|
|
|
|
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
inputs = processor(
|
|
text=input_str,
|
|
images=image_input,
|
|
return_tensors="pt",
|
|
size={"height": 214, "width": 214},
|
|
padding="max_length",
|
|
max_length=76,
|
|
)
|
|
|
|
self.assertEqual(inputs["pixel_values"].shape[2], 214)
|
|
self.assertEqual(len(inputs["input_ids"][0]), 76)
|
|
|
|
def test_unstructured_kwargs_batched(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
image_processor = self.get_component("image_processor")
|
|
tokenizer = self.get_component("tokenizer")
|
|
|
|
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
|
|
input_str = ["lower newer", "upper older longer string"]
|
|
image_input = self.prepare_image_inputs() * 2
|
|
inputs = processor(
|
|
text=input_str,
|
|
images=image_input,
|
|
return_tensors="pt",
|
|
size={"height": 214, "width": 214},
|
|
padding="longest",
|
|
max_length=76,
|
|
)
|
|
|
|
self.assertEqual(inputs["pixel_values"].shape[2], 214)
|
|
|
|
self.assertEqual(len(inputs["input_ids"][0]), 6)
|
|
|
|
def test_doubly_passed_kwargs(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
image_processor = self.get_component("image_processor")
|
|
tokenizer = self.get_component("tokenizer")
|
|
|
|
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
|
|
input_str = ["lower newer"]
|
|
image_input = self.prepare_image_inputs()
|
|
with self.assertRaises(ValueError):
|
|
_ = processor(
|
|
text=input_str,
|
|
images=image_input,
|
|
images_kwargs={"size": {"height": 222, "width": 222}},
|
|
size={"height": 214, "width": 214},
|
|
)
|
|
|
|
def test_structured_kwargs_nested(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
image_processor = self.get_component("image_processor")
|
|
tokenizer = self.get_component("tokenizer")
|
|
|
|
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
# Define the kwargs for each modality
|
|
all_kwargs = {
|
|
"common_kwargs": {"return_tensors": "pt"},
|
|
"images_kwargs": {"size": {"height": 214, "width": 214}},
|
|
"text_kwargs": {"padding": "max_length", "max_length": 76},
|
|
}
|
|
|
|
inputs = processor(text=input_str, images=image_input, **all_kwargs)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
|
|
self.assertEqual(inputs["pixel_values"].shape[2], 214)
|
|
|
|
self.assertEqual(len(inputs["input_ids"][0]), 76)
|
|
|
|
def test_structured_kwargs_nested_from_dict(self):
|
|
if "image_processor" not in self.processor_class.attributes:
|
|
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
|
|
|
|
image_processor = self.get_component("image_processor")
|
|
tokenizer = self.get_component("tokenizer")
|
|
|
|
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
|
|
self.skip_processor_without_typed_kwargs(processor)
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
# Define the kwargs for each modality
|
|
all_kwargs = {
|
|
"common_kwargs": {"return_tensors": "pt"},
|
|
"images_kwargs": {"size": {"height": 214, "width": 214}},
|
|
"text_kwargs": {"padding": "max_length", "max_length": 76},
|
|
}
|
|
|
|
inputs = processor(text=input_str, images=image_input, **all_kwargs)
|
|
self.assertEqual(inputs["pixel_values"].shape[2], 214)
|
|
|
|
self.assertEqual(len(inputs["input_ids"][0]), 76)
|