transformers/tests/models/pixtral/test_processor_pixtral.py
Yoni Gozlan d8500cd229
Uniformize kwargs for Pixtral processor (#33521)
* add uniformized pixtral and kwargs

* update doc

* fix _validate_images_text_input_order

* nit
2024-09-17 14:44:27 -04:00

392 lines
18 KiB
Python

# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
import tempfile
import unittest
import requests
import torch
from transformers.testing_utils import (
require_torch,
require_vision,
)
from transformers.utils import is_vision_available
from ...test_processing_common import ProcessorTesterMixin
if is_vision_available():
from PIL import Image
from transformers import AutoTokenizer, PixtralImageProcessor, PixtralProcessor
@require_vision
class PixtralProcessorTest(ProcessorTesterMixin, unittest.TestCase):
processor_class = PixtralProcessor
@classmethod
def setUpClass(cls):
cls.url_0 = "https://www.ilankelman.org/stopsigns/australia.jpg"
cls.image_0 = Image.open(requests.get(cls.url_0, stream=True).raw)
cls.url_1 = "http://images.cocodataset.org/val2017/000000039769.jpg"
cls.image_1 = Image.open(requests.get(cls.url_1, stream=True).raw)
cls.url_2 = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg"
cls.image_2 = Image.open(requests.get(cls.url_2, stream=True).raw)
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
# FIXME - just load the processor directly from the checkpoint
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/pixtral-12b")
image_processor = PixtralImageProcessor()
processor = PixtralProcessor(tokenizer=tokenizer, image_processor=image_processor)
processor.save_pretrained(self.tmpdirname)
def tearDown(self):
shutil.rmtree(self.tmpdirname)
@unittest.skip("No chat template was set for this model (yet)")
def test_chat_template(self):
processor = self.processor_class.from_pretrained(self.tmpdirname)
expected_prompt = "USER: [IMG]\nWhat is shown in this image? ASSISTANT:"
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
]
formatted_prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
self.assertEqual(expected_prompt, formatted_prompt)
@unittest.skip("No chat template was set for this model (yet)")
def test_image_token_filling(self):
processor = self.processor_class.from_pretrained(self.tmpdirname)
# Important to check with non square image
image = torch.randint(0, 2, (3, 500, 316))
expected_image_tokens = 1526
image_token_index = 32000
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
]
inputs = processor(
text=[processor.apply_chat_template(messages)],
images=[image],
return_tensors="pt",
)
image_tokens = (inputs["input_ids"] == image_token_index).sum().item()
self.assertEqual(expected_image_tokens, image_tokens)
def test_processor_with_single_image(self):
processor = self.processor_class.from_pretrained(self.tmpdirname)
prompt_string = "USER: [IMG]\nWhat's the content of the image? ASSISTANT:"
# Make small for checking image token expansion
processor.image_processor.size = {"longest_edge": 30}
processor.image_processor.patch_size = {"height": 2, "width": 2}
# Test passing in an image
inputs_image = processor(text=prompt_string, images=self.image_0, return_tensors="pt")
self.assertIn("input_ids", inputs_image)
self.assertTrue(len(inputs_image["input_ids"]) == 1)
self.assertIsInstance(inputs_image["input_ids"], torch.Tensor)
self.assertIsInstance(inputs_image["pixel_values"], list)
self.assertTrue(len(inputs_image["pixel_values"]) == 1)
self.assertIsInstance(inputs_image["pixel_values"][0], list)
self.assertTrue(len(inputs_image["pixel_values"][0]) == 1)
self.assertIsInstance(inputs_image["pixel_values"][0][0], torch.Tensor)
# fmt: off
input_ids = inputs_image["input_ids"]
self.assertEqual(
input_ids[0].tolist(),
# Equivalent to "USER: [IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END]\nWhat's the content of the image? ASSISTANT:"
[21510, 1058, 1032, 10, 10, 12, 10, 10, 13, 1010, 7493, 1681, 1278, 4701, 1307, 1278, 3937, 1063, 1349, 4290, 16002, 41150, 1058]
)
# fmt: on
# Test passing in a url
inputs_url = processor(text=prompt_string, images=self.url_0, return_tensors="pt")
self.assertIn("input_ids", inputs_url)
self.assertTrue(len(inputs_url["input_ids"]) == 1)
self.assertIsInstance(inputs_url["input_ids"], torch.Tensor)
self.assertIsInstance(inputs_url["pixel_values"], list)
self.assertTrue(len(inputs_url["pixel_values"]) == 1)
self.assertIsInstance(inputs_url["pixel_values"][0], list)
self.assertTrue(len(inputs_url["pixel_values"][0]) == 1)
self.assertIsInstance(inputs_url["pixel_values"][0][0], torch.Tensor)
# fmt: off
input_ids = inputs_url["input_ids"]
self.assertEqual(
input_ids[0].tolist(),
# Equivalent to "USER: [IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END]\nWhat's the content of the image? ASSISTANT:"
[21510, 1058, 1032, 10, 10, 12, 10, 10, 13, 1010, 7493, 1681, 1278, 4701, 1307, 1278, 3937, 1063, 1349, 4290, 16002, 41150, 1058]
)
# fmt: on
def test_processor_with_multiple_images_single_list(self):
processor = self.processor_class.from_pretrained(self.tmpdirname)
prompt_string = "USER: [IMG][IMG]\nWhat's the difference between these two images? ASSISTANT:"
# Make small for checking image token expansion
processor.image_processor.size = {"longest_edge": 30}
processor.image_processor.patch_size = {"height": 2, "width": 2}
# Test passing in an image
inputs_image = processor(text=prompt_string, images=[self.image_0, self.image_1], return_tensors="pt")
self.assertIn("input_ids", inputs_image)
self.assertTrue(len(inputs_image["input_ids"]) == 1)
self.assertIsInstance(inputs_image["input_ids"], torch.Tensor)
self.assertIsInstance(inputs_image["pixel_values"], list)
self.assertTrue(len(inputs_image["pixel_values"]) == 1)
self.assertIsInstance(inputs_image["pixel_values"][0], list)
self.assertTrue(len(inputs_image["pixel_values"][0]) == 2)
self.assertIsInstance(inputs_image["pixel_values"][0][0], torch.Tensor)
# fmt: off
input_ids = inputs_image["input_ids"]
self.assertEqual(
input_ids[0].tolist(),
# Equivalent to ["USER: [IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END][IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END]\nWhat's the difference between these two images? ASSISTANT:"]
[21510, 1058, 1032, 10, 10, 12, 10, 10, 13, 10, 10, 12, 10, 10, 13, 1010, 7493, 1681, 1278, 6592, 2396, 2576, 2295, 8061, 1063, 1349, 4290, 16002, 41150, 1058]
)
# fmt: on
# Test passing in a url
inputs_url = processor(text=prompt_string, images=[self.url_0, self.url_1], return_tensors="pt")
self.assertIn("input_ids", inputs_url)
self.assertTrue(len(inputs_url["input_ids"]) == 1)
self.assertIsInstance(inputs_url["input_ids"], torch.Tensor)
self.assertIsInstance(inputs_url["pixel_values"], list)
self.assertTrue(len(inputs_url["pixel_values"]) == 1)
self.assertIsInstance(inputs_url["pixel_values"][0], list)
self.assertTrue(len(inputs_url["pixel_values"][0]) == 2)
self.assertIsInstance(inputs_url["pixel_values"][0][0], torch.Tensor)
# fmt: off
input_ids = inputs_url["input_ids"]
self.assertEqual(
input_ids[0].tolist(),
# Equivalent to ["USER: [IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END][IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END]\nWhat's the difference between these two images? ASSISTANT:"]
[21510, 1058, 1032, 10, 10, 12, 10, 10, 13, 10, 10, 12, 10, 10, 13, 1010, 7493, 1681, 1278, 6592, 2396, 2576, 2295, 8061, 1063, 1349, 4290, 16002, 41150, 1058]
)
# fmt: on
def test_processor_with_multiple_images_multiple_lists(self):
processor = self.processor_class.from_pretrained(self.tmpdirname)
prompt_string = [
"USER: [IMG][IMG]\nWhat's the difference between these two images? ASSISTANT:",
"USER: [IMG]\nWhat's the content of the image? ASSISTANT:",
]
processor.tokenizer.pad_token = "</s>"
image_inputs = [[self.image_0, self.image_1], [self.image_2]]
# Make small for checking image token expansion
processor.image_processor.size = {"longest_edge": 30}
processor.image_processor.patch_size = {"height": 2, "width": 2}
# Test passing in an image
inputs_image = processor(text=prompt_string, images=image_inputs, return_tensors="pt", padding=True)
self.assertIn("input_ids", inputs_image)
self.assertTrue(len(inputs_image["input_ids"]) == 2)
self.assertIsInstance(inputs_image["input_ids"], torch.Tensor)
self.assertIsInstance(inputs_image["pixel_values"], list)
self.assertTrue(len(inputs_image["pixel_values"]) == 2)
self.assertIsInstance(inputs_image["pixel_values"][0], list)
self.assertTrue(len(inputs_image["pixel_values"][0]) == 2)
self.assertIsInstance(inputs_image["pixel_values"][0][0], torch.Tensor)
# fmt: off
input_ids = inputs_image["input_ids"]
self.assertEqual(
input_ids[0].tolist(),
# Equivalent to ["USER: [IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END][IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END]\nWhat's the difference between these two images? ASSISTANT:"]
[21510, 1058, 1032, 10, 10, 12, 10, 10, 13, 10, 10, 12, 10, 10, 13, 1010, 7493, 1681, 1278, 6592, 2396, 2576, 2295, 8061, 1063, 1349, 4290, 16002, 41150, 1058]
)
# fmt: on
# Test passing in a url
inputs_url = processor(text=prompt_string, images=image_inputs, return_tensors="pt", padding=True)
self.assertIn("input_ids", inputs_url)
self.assertTrue(len(inputs_url["input_ids"]) == 2)
self.assertIsInstance(inputs_url["input_ids"], torch.Tensor)
self.assertIsInstance(inputs_url["pixel_values"], list)
self.assertTrue(len(inputs_url["pixel_values"]) == 2)
self.assertIsInstance(inputs_url["pixel_values"][0], list)
self.assertTrue(len(inputs_url["pixel_values"][0]) == 2)
self.assertIsInstance(inputs_url["pixel_values"][0][0], torch.Tensor)
# fmt: off
input_ids = inputs_url["input_ids"]
self.assertEqual(
input_ids[0].tolist(),
# Equivalent to ["USER: [IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END][IMG][IMG][IMG_BREAK][IMG][IMG][IMG_END]\nWhat's the difference between these two images? ASSISTANT:"]
[21510, 1058, 1032, 10, 10, 12, 10, 10, 13, 10, 10, 12, 10, 10, 13, 1010, 7493, 1681, 1278, 6592, 2396, 2576, 2295, 8061, 1063, 1349, 4290, 16002, 41150, 1058]
)
# fmt: on
# Override all tests requiring shape as returning tensor batches is not supported by PixtralProcessor
@require_torch
@require_vision
def test_image_processor_defaults_preserved_by_image_kwargs(self):
if "image_processor" not in self.processor_class.attributes:
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
image_processor = self.get_component("image_processor", size={"height": 240, "width": 240})
tokenizer = self.get_component("tokenizer", max_length=117, padding="max_length")
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
self.skip_processor_without_typed_kwargs(processor)
input_str = "lower newer"
image_input = self.prepare_image_inputs()
inputs = processor(text=input_str, images=image_input)
# Added dimension by pixtral image processor
self.assertEqual(len(inputs["pixel_values"][0][0][0][0]), 240)
@require_torch
@require_vision
def test_kwargs_overrides_default_image_processor_kwargs(self):
if "image_processor" not in self.processor_class.attributes:
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
image_processor = self.get_component("image_processor", size={"height": 400, "width": 400})
tokenizer = self.get_component("tokenizer", max_length=117, padding="max_length")
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
self.skip_processor_without_typed_kwargs(processor)
input_str = "lower newer"
image_input = self.prepare_image_inputs()
inputs = processor(text=input_str, images=image_input, size={"height": 240, "width": 240})
self.assertEqual(len(inputs["pixel_values"][0][0][0][0]), 240)
@require_torch
@require_vision
def test_structured_kwargs_nested(self):
if "image_processor" not in self.processor_class.attributes:
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
image_processor = self.get_component("image_processor")
tokenizer = self.get_component("tokenizer")
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
self.skip_processor_without_typed_kwargs(processor)
input_str = "lower newer"
image_input = self.prepare_image_inputs()
# Define the kwargs for each modality
all_kwargs = {
"common_kwargs": {"return_tensors": "pt"},
"images_kwargs": {"size": {"height": 240, "width": 240}},
"text_kwargs": {"padding": "max_length", "max_length": 76},
}
inputs = processor(text=input_str, images=image_input, **all_kwargs)
self.skip_processor_without_typed_kwargs(processor)
self.assertEqual(inputs["pixel_values"][0][0].shape[-1], 240)
self.assertEqual(len(inputs["input_ids"][0]), 76)
@require_torch
@require_vision
def test_structured_kwargs_nested_from_dict(self):
if "image_processor" not in self.processor_class.attributes:
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
image_processor = self.get_component("image_processor")
tokenizer = self.get_component("tokenizer")
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
self.skip_processor_without_typed_kwargs(processor)
input_str = "lower newer"
image_input = self.prepare_image_inputs()
# Define the kwargs for each modality
all_kwargs = {
"common_kwargs": {"return_tensors": "pt"},
"images_kwargs": {"size": {"height": 240, "width": 240}},
"text_kwargs": {"padding": "max_length", "max_length": 76},
}
inputs = processor(text=input_str, images=image_input, **all_kwargs)
self.assertEqual(inputs["pixel_values"][0][0].shape[-1], 240)
self.assertEqual(len(inputs["input_ids"][0]), 76)
@require_torch
@require_vision
def test_unstructured_kwargs(self):
if "image_processor" not in self.processor_class.attributes:
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
image_processor = self.get_component("image_processor")
tokenizer = self.get_component("tokenizer")
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
self.skip_processor_without_typed_kwargs(processor)
input_str = "lower newer"
image_input = self.prepare_image_inputs()
inputs = processor(
text=input_str,
images=image_input,
return_tensors="pt",
size={"height": 240, "width": 240},
padding="max_length",
max_length=76,
)
self.assertEqual(inputs["pixel_values"][0][0].shape[-1], 240)
self.assertEqual(len(inputs["input_ids"][0]), 76)
@require_torch
@require_vision
def test_unstructured_kwargs_batched(self):
if "image_processor" not in self.processor_class.attributes:
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
image_processor = self.get_component("image_processor")
tokenizer = self.get_component("tokenizer")
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
self.skip_processor_without_typed_kwargs(processor)
input_str = ["lower newer", "upper older longer string"]
# images needs to be nested to detect multiple prompts
image_input = [self.prepare_image_inputs()] * 2
inputs = processor(
text=input_str,
images=image_input,
return_tensors="pt",
size={"height": 240, "width": 240},
padding="longest",
max_length=76,
)
self.assertEqual(inputs["pixel_values"][0][0].shape[-1], 240)
self.assertEqual(len(inputs["input_ids"][0]), 4)