transformers/docs/source/model_doc/mt5.rst
NielsRogge 4766e009b0
Improve T5 docs (#13240)
* Remove disclaimer

* First draft

* Fix rebase

* Improve docs some more

* Add inference section

* Improve example scripts section

* Improve code examples of modeling files

* Add docs regarding task prefix

* Address @craffel's comments

* Apply suggestions from @patrickvonplaten's review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Add suggestions from code review

* Apply @sgugger's suggestions

* Fix Flax code examples

* Fix index.rst

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-09-01 15:05:40 +02:00

128 lines
4.8 KiB
ReStructuredText

..
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
MT5
-----------------------------------------------------------------------------------------------------------------------
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The mT5 model was presented in `mT5: A massively multilingual pre-trained text-to-text transformer
<https://arxiv.org/abs/2010.11934>`_ by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya
Siddhant, Aditya Barua, Colin Raffel.
The abstract from the paper is the following:
*The recent "Text-to-Text Transfer Transformer" (T5) leveraged a unified text-to-text format and scale to attain
state-of-the-art results on a wide variety of English-language NLP tasks. In this paper, we introduce mT5, a
multilingual variant of T5 that was pre-trained on a new Common Crawl-based dataset covering 101 languages. We describe
the design and modified training of mT5 and demonstrate its state-of-the-art performance on many multilingual
benchmarks. All of the code and model checkpoints*
Note: mT5 was only pre-trained on `mC4 <https://huggingface.co/datasets/mc4>`__ excluding any supervised training.
Therefore, this model has to be fine-tuned before it is useable on a downstream task, unlike the original T5 model.
Since mT5 was pre-trained unsupervisedly, there's no real advantage to using a task prefix during single-task
fine-tuning. If you are doing multi-task fine-tuning, you should use a prefix.
Google has released the following variants:
- `google/mt5-small <https://huggingface.co/google/mt5-small>`__
- `google/mt5-base <https://huggingface.co/google/mt5-base>`__
- `google/mt5-large <https://huggingface.co/google/mt5-large>`__
- `google/mt5-xl <https://huggingface.co/google/mt5-xl>`__
- `google/mt5-xxl <https://huggingface.co/google/mt5-xxl>`__.
This model was contributed by `patrickvonplaten <https://huggingface.co/patrickvonplaten>`__. The original code can be
found `here <https://github.com/google-research/multilingual-t5>`__.
MT5Config
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MT5Config
:members:
MT5Tokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MT5Tokenizer
See :class:`~transformers.T5Tokenizer` for all details.
MT5TokenizerFast
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MT5TokenizerFast
See :class:`~transformers.T5TokenizerFast` for all details.
MT5Model
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MT5Model
:members:
MT5ForConditionalGeneration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MT5ForConditionalGeneration
:members:
MT5EncoderModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MT5EncoderModel
:members:
TFMT5Model
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFMT5Model
:members:
TFMT5ForConditionalGeneration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFMT5ForConditionalGeneration
:members:
TFMT5EncoderModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFMT5EncoderModel
:members:
FlaxMT5Model
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaxMT5Model
:members:
FlaxMT5ForConditionalGeneration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FlaxMT5ForConditionalGeneration
:members: