mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-06 14:20:04 +06:00

* Chunkable classification pipeline The TokenClassificationPipeline is now able to process sequences longer than 512. No matter the framework, the model, the tokenizer. We just have to pass process_all=True and a stride number (optional). The behavior remains the same if you don't pass these optional parameters. For overlapping parts when using stride above 0, we consider only the max scores for each overlapped token in all chunks where the token is. * Update token_classification.py * Update token_classification.py * Update token_classification.py * Update token_classification.py * Update token_classification.py * Update token_classification.py * Update token_classification.py * Update token_classification.py * Update token_classification.py * Update token_classification.py * Update token_classification.py * Update token_classification.py * update with latest black format * update black format * Update token_classification.py * Update token_classification.py * format correction * Update token_classification.py * Update token_classification.py * Update token_classification.py * Update token_classification.py * Update comments * Update src/transformers/pipelines/token_classification.py Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com> * Update token_classification.py Correct spaces, remove process_all and keep only stride. If stride is provided, the pipeline is applied to the whole text. * Update token_classification.py * Update token_classification.py * Update token_classification.py * Update token_classification.py * Update token_classification.py * Update token_classification.py * Update token_classification.py * Update token_classification.py * Update chunk aggregation Update the chunk aggregation strategy based on entities aggregation. * Update token_classification.py * Update token_classification.py * Update token_classification.py * Update token_classification.py * Update token_classification.py * Update token_classification.py * Update token_classification.py * Update token_classification.py * Update token_classification.py * Update token_classification.py * Update token_classification.py * Update token_classification.py Remove unnecessary pop from outputs dict * Update token_classification.py * Update token_classification.py * Update token_classification.py * Update token_classification.py * Update token_classification.py * Update token_classification.py * Update token_classification.py * Update src/transformers/pipelines/token_classification.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * add chunking tests * correct formating * correct formatting * correct model id for test chunking * update scores with nested simplify * Update test_pipelines_token_classification.py * Update test_pipelines_token_classification.py * update model to a tiny one * Update test_pipelines_token_classification.py * Adding smaller test for chunking. * Fixup * Update token_classification.py * Update src/transformers/pipelines/token_classification.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update src/transformers/pipelines/token_classification.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> --------- Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com> Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
947 lines
40 KiB
Python
947 lines
40 KiB
Python
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from transformers import (
|
|
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
|
|
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
|
|
AutoModelForTokenClassification,
|
|
AutoTokenizer,
|
|
TokenClassificationPipeline,
|
|
pipeline,
|
|
)
|
|
from transformers.pipelines import AggregationStrategy, TokenClassificationArgumentHandler
|
|
from transformers.testing_utils import (
|
|
is_pipeline_test,
|
|
nested_simplify,
|
|
require_tf,
|
|
require_torch,
|
|
require_torch_gpu,
|
|
slow,
|
|
)
|
|
|
|
from .test_pipelines_common import ANY
|
|
|
|
|
|
VALID_INPUTS = ["A simple string", ["list of strings", "A simple string that is quite a bit longer"]]
|
|
|
|
|
|
@is_pipeline_test
|
|
class TokenClassificationPipelineTests(unittest.TestCase):
|
|
model_mapping = MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
|
|
tf_model_mapping = TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
|
|
|
|
def get_test_pipeline(self, model, tokenizer, processor):
|
|
token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer)
|
|
return token_classifier, ["A simple string", "A simple string that is quite a bit longer"]
|
|
|
|
def run_pipeline_test(self, token_classifier, _):
|
|
model = token_classifier.model
|
|
tokenizer = token_classifier.tokenizer
|
|
if not tokenizer.is_fast:
|
|
return # Slow tokenizers do not return offsets mappings, so this test will fail
|
|
|
|
outputs = token_classifier("A simple string")
|
|
self.assertIsInstance(outputs, list)
|
|
n = len(outputs)
|
|
self.assertEqual(
|
|
nested_simplify(outputs),
|
|
[
|
|
{
|
|
"entity": ANY(str),
|
|
"score": ANY(float),
|
|
"start": ANY(int),
|
|
"end": ANY(int),
|
|
"index": ANY(int),
|
|
"word": ANY(str),
|
|
}
|
|
for i in range(n)
|
|
],
|
|
)
|
|
outputs = token_classifier(["list of strings", "A simple string that is quite a bit longer"])
|
|
self.assertIsInstance(outputs, list)
|
|
self.assertEqual(len(outputs), 2)
|
|
n = len(outputs[0])
|
|
m = len(outputs[1])
|
|
|
|
self.assertEqual(
|
|
nested_simplify(outputs),
|
|
[
|
|
[
|
|
{
|
|
"entity": ANY(str),
|
|
"score": ANY(float),
|
|
"start": ANY(int),
|
|
"end": ANY(int),
|
|
"index": ANY(int),
|
|
"word": ANY(str),
|
|
}
|
|
for i in range(n)
|
|
],
|
|
[
|
|
{
|
|
"entity": ANY(str),
|
|
"score": ANY(float),
|
|
"start": ANY(int),
|
|
"end": ANY(int),
|
|
"index": ANY(int),
|
|
"word": ANY(str),
|
|
}
|
|
for i in range(m)
|
|
],
|
|
],
|
|
)
|
|
|
|
self.run_aggregation_strategy(model, tokenizer)
|
|
|
|
def run_aggregation_strategy(self, model, tokenizer):
|
|
token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
|
self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.SIMPLE)
|
|
outputs = token_classifier("A simple string")
|
|
self.assertIsInstance(outputs, list)
|
|
n = len(outputs)
|
|
self.assertEqual(
|
|
nested_simplify(outputs),
|
|
[
|
|
{
|
|
"entity_group": ANY(str),
|
|
"score": ANY(float),
|
|
"start": ANY(int),
|
|
"end": ANY(int),
|
|
"word": ANY(str),
|
|
}
|
|
for i in range(n)
|
|
],
|
|
)
|
|
|
|
token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="first")
|
|
self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.FIRST)
|
|
outputs = token_classifier("A simple string")
|
|
self.assertIsInstance(outputs, list)
|
|
n = len(outputs)
|
|
self.assertEqual(
|
|
nested_simplify(outputs),
|
|
[
|
|
{
|
|
"entity_group": ANY(str),
|
|
"score": ANY(float),
|
|
"start": ANY(int),
|
|
"end": ANY(int),
|
|
"word": ANY(str),
|
|
}
|
|
for i in range(n)
|
|
],
|
|
)
|
|
|
|
token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="max")
|
|
self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.MAX)
|
|
outputs = token_classifier("A simple string")
|
|
self.assertIsInstance(outputs, list)
|
|
n = len(outputs)
|
|
self.assertEqual(
|
|
nested_simplify(outputs),
|
|
[
|
|
{
|
|
"entity_group": ANY(str),
|
|
"score": ANY(float),
|
|
"start": ANY(int),
|
|
"end": ANY(int),
|
|
"word": ANY(str),
|
|
}
|
|
for i in range(n)
|
|
],
|
|
)
|
|
|
|
token_classifier = TokenClassificationPipeline(
|
|
model=model, tokenizer=tokenizer, aggregation_strategy="average"
|
|
)
|
|
self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.AVERAGE)
|
|
outputs = token_classifier("A simple string")
|
|
self.assertIsInstance(outputs, list)
|
|
n = len(outputs)
|
|
self.assertEqual(
|
|
nested_simplify(outputs),
|
|
[
|
|
{
|
|
"entity_group": ANY(str),
|
|
"score": ANY(float),
|
|
"start": ANY(int),
|
|
"end": ANY(int),
|
|
"word": ANY(str),
|
|
}
|
|
for i in range(n)
|
|
],
|
|
)
|
|
|
|
with self.assertWarns(UserWarning):
|
|
token_classifier = pipeline(task="ner", model=model, tokenizer=tokenizer, grouped_entities=True)
|
|
self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.SIMPLE)
|
|
with self.assertWarns(UserWarning):
|
|
token_classifier = pipeline(
|
|
task="ner", model=model, tokenizer=tokenizer, grouped_entities=True, ignore_subwords=True
|
|
)
|
|
self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.FIRST)
|
|
|
|
@slow
|
|
@require_torch
|
|
def test_chunking(self):
|
|
NER_MODEL = "elastic/distilbert-base-uncased-finetuned-conll03-english"
|
|
model = AutoModelForTokenClassification.from_pretrained(NER_MODEL)
|
|
tokenizer = AutoTokenizer.from_pretrained(NER_MODEL, use_fast=True)
|
|
tokenizer.model_max_length = 10
|
|
stride = 5
|
|
sentence = (
|
|
"Hugging Face, Inc. is a French company that develops tools for building applications using machine learning. "
|
|
"The company, based in New York City was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf."
|
|
)
|
|
|
|
token_classifier = TokenClassificationPipeline(
|
|
model=model, tokenizer=tokenizer, aggregation_strategy="simple", stride=stride
|
|
)
|
|
output = token_classifier(sentence)
|
|
self.assertEqual(
|
|
nested_simplify(output),
|
|
[
|
|
{"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18},
|
|
{"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30},
|
|
{"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144},
|
|
{"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174},
|
|
{"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205},
|
|
{"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222},
|
|
{"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239},
|
|
],
|
|
)
|
|
|
|
token_classifier = TokenClassificationPipeline(
|
|
model=model, tokenizer=tokenizer, aggregation_strategy="first", stride=stride
|
|
)
|
|
output = token_classifier(sentence)
|
|
self.assertEqual(
|
|
nested_simplify(output),
|
|
[
|
|
{"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18},
|
|
{"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30},
|
|
{"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144},
|
|
{"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174},
|
|
{"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205},
|
|
{"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222},
|
|
{"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239},
|
|
],
|
|
)
|
|
|
|
token_classifier = TokenClassificationPipeline(
|
|
model=model, tokenizer=tokenizer, aggregation_strategy="max", stride=stride
|
|
)
|
|
output = token_classifier(sentence)
|
|
self.assertEqual(
|
|
nested_simplify(output),
|
|
[
|
|
{"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18},
|
|
{"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30},
|
|
{"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144},
|
|
{"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174},
|
|
{"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205},
|
|
{"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222},
|
|
{"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239},
|
|
],
|
|
)
|
|
|
|
token_classifier = TokenClassificationPipeline(
|
|
model=model, tokenizer=tokenizer, aggregation_strategy="average", stride=stride
|
|
)
|
|
output = token_classifier(sentence)
|
|
self.assertEqual(
|
|
nested_simplify(output),
|
|
[
|
|
{"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18},
|
|
{"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30},
|
|
{"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144},
|
|
{"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174},
|
|
{"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205},
|
|
{"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222},
|
|
{"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239},
|
|
],
|
|
)
|
|
|
|
@require_torch
|
|
def test_chunking_fast(self):
|
|
# Note: We cannot run the test on "conflicts" on the chunking.
|
|
# The problem is that the model is random, and thus the results do heavily
|
|
# depend on the chunking, so we cannot expect "abcd" and "bcd" to find
|
|
# the same entities. We defer to slow tests for this.
|
|
pipe = pipeline(model="hf-internal-testing/tiny-bert-for-token-classification")
|
|
sentence = "The company, based in New York City was founded in 2016 by French entrepreneurs"
|
|
|
|
results = pipe(sentence, aggregation_strategy="first")
|
|
# This is what this random model gives on the full sentence
|
|
self.assertEqual(
|
|
nested_simplify(results),
|
|
[
|
|
# This is 2 actual tokens
|
|
{"end": 39, "entity_group": "MISC", "score": 0.115, "start": 31, "word": "city was"},
|
|
{"end": 79, "entity_group": "MISC", "score": 0.115, "start": 66, "word": "entrepreneurs"},
|
|
],
|
|
)
|
|
|
|
# This will force the tokenizer to split after "city was".
|
|
pipe.tokenizer.model_max_length = 12
|
|
self.assertEqual(
|
|
pipe.tokenizer.decode(pipe.tokenizer.encode(sentence, truncation=True)),
|
|
"[CLS] the company, based in new york city was [SEP]",
|
|
)
|
|
|
|
stride = 4
|
|
results = pipe(sentence, aggregation_strategy="first", stride=stride)
|
|
self.assertEqual(
|
|
nested_simplify(results),
|
|
[
|
|
{"end": 39, "entity_group": "MISC", "score": 0.115, "start": 31, "word": "city was"},
|
|
# This is an extra entity found by this random model, but at least both original
|
|
# entities are there
|
|
{"end": 58, "entity_group": "MISC", "score": 0.115, "start": 56, "word": "by"},
|
|
{"end": 79, "entity_group": "MISC", "score": 0.115, "start": 66, "word": "entrepreneurs"},
|
|
],
|
|
)
|
|
|
|
@require_torch
|
|
@slow
|
|
def test_spanish_bert(self):
|
|
# https://github.com/huggingface/transformers/pull/4987
|
|
NER_MODEL = "mrm8488/bert-spanish-cased-finetuned-ner"
|
|
model = AutoModelForTokenClassification.from_pretrained(NER_MODEL)
|
|
tokenizer = AutoTokenizer.from_pretrained(NER_MODEL, use_fast=True)
|
|
sentence = """Consuelo Araújo Noguera, ministra de cultura del presidente Andrés Pastrana (1998.2002) fue asesinada por las Farc luego de haber permanecido secuestrada por algunos meses."""
|
|
|
|
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer)
|
|
output = token_classifier(sentence)
|
|
self.assertEqual(
|
|
nested_simplify(output[:3]),
|
|
[
|
|
{"entity": "B-PER", "score": 0.999, "word": "Cons", "start": 0, "end": 4, "index": 1},
|
|
{"entity": "B-PER", "score": 0.803, "word": "##uelo", "start": 4, "end": 8, "index": 2},
|
|
{"entity": "I-PER", "score": 0.999, "word": "Ara", "start": 9, "end": 12, "index": 3},
|
|
],
|
|
)
|
|
|
|
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
|
output = token_classifier(sentence)
|
|
self.assertEqual(
|
|
nested_simplify(output[:3]),
|
|
[
|
|
{"entity_group": "PER", "score": 0.999, "word": "Cons", "start": 0, "end": 4},
|
|
{"entity_group": "PER", "score": 0.966, "word": "##uelo Araújo Noguera", "start": 4, "end": 23},
|
|
{"entity_group": "PER", "score": 1.0, "word": "Andrés Pastrana", "start": 60, "end": 75},
|
|
],
|
|
)
|
|
|
|
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="first")
|
|
output = token_classifier(sentence)
|
|
self.assertEqual(
|
|
nested_simplify(output[:3]),
|
|
[
|
|
{"entity_group": "PER", "score": 0.999, "word": "Consuelo Araújo Noguera", "start": 0, "end": 23},
|
|
{"entity_group": "PER", "score": 1.0, "word": "Andrés Pastrana", "start": 60, "end": 75},
|
|
{"entity_group": "ORG", "score": 0.999, "word": "Farc", "start": 110, "end": 114},
|
|
],
|
|
)
|
|
|
|
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="max")
|
|
output = token_classifier(sentence)
|
|
self.assertEqual(
|
|
nested_simplify(output[:3]),
|
|
[
|
|
{"entity_group": "PER", "score": 0.999, "word": "Consuelo Araújo Noguera", "start": 0, "end": 23},
|
|
{"entity_group": "PER", "score": 1.0, "word": "Andrés Pastrana", "start": 60, "end": 75},
|
|
{"entity_group": "ORG", "score": 0.999, "word": "Farc", "start": 110, "end": 114},
|
|
],
|
|
)
|
|
|
|
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="average")
|
|
output = token_classifier(sentence)
|
|
self.assertEqual(
|
|
nested_simplify(output[:3]),
|
|
[
|
|
{"entity_group": "PER", "score": 0.966, "word": "Consuelo Araújo Noguera", "start": 0, "end": 23},
|
|
{"entity_group": "PER", "score": 1.0, "word": "Andrés Pastrana", "start": 60, "end": 75},
|
|
{"entity_group": "ORG", "score": 0.542, "word": "Farc", "start": 110, "end": 114},
|
|
],
|
|
)
|
|
|
|
@require_torch_gpu
|
|
@slow
|
|
def test_gpu(self):
|
|
sentence = "This is dummy sentence"
|
|
ner = pipeline(
|
|
"token-classification",
|
|
device=0,
|
|
aggregation_strategy=AggregationStrategy.SIMPLE,
|
|
)
|
|
|
|
output = ner(sentence)
|
|
self.assertEqual(nested_simplify(output), [])
|
|
|
|
@require_torch
|
|
@slow
|
|
def test_dbmdz_english(self):
|
|
# Other sentence
|
|
NER_MODEL = "dbmdz/bert-large-cased-finetuned-conll03-english"
|
|
model = AutoModelForTokenClassification.from_pretrained(NER_MODEL)
|
|
tokenizer = AutoTokenizer.from_pretrained(NER_MODEL, use_fast=True)
|
|
sentence = """Enzo works at the UN"""
|
|
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer)
|
|
output = token_classifier(sentence)
|
|
self.assertEqual(
|
|
nested_simplify(output),
|
|
[
|
|
{"entity": "I-PER", "score": 0.998, "word": "En", "start": 0, "end": 2, "index": 1},
|
|
{"entity": "I-PER", "score": 0.997, "word": "##zo", "start": 2, "end": 4, "index": 2},
|
|
{"entity": "I-ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20, "index": 6},
|
|
],
|
|
)
|
|
|
|
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
|
output = token_classifier(sentence)
|
|
self.assertEqual(
|
|
nested_simplify(output),
|
|
[
|
|
{"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4},
|
|
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20},
|
|
],
|
|
)
|
|
|
|
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="first")
|
|
output = token_classifier(sentence)
|
|
self.assertEqual(
|
|
nested_simplify(output[:3]),
|
|
[
|
|
{"entity_group": "PER", "score": 0.998, "word": "Enzo", "start": 0, "end": 4},
|
|
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20},
|
|
],
|
|
)
|
|
|
|
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="max")
|
|
output = token_classifier(sentence)
|
|
self.assertEqual(
|
|
nested_simplify(output[:3]),
|
|
[
|
|
{"entity_group": "PER", "score": 0.998, "word": "Enzo", "start": 0, "end": 4},
|
|
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20},
|
|
],
|
|
)
|
|
|
|
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="average")
|
|
output = token_classifier(sentence)
|
|
self.assertEqual(
|
|
nested_simplify(output),
|
|
[
|
|
{"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4},
|
|
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20},
|
|
],
|
|
)
|
|
|
|
@require_torch
|
|
@slow
|
|
def test_aggregation_strategy_byte_level_tokenizer(self):
|
|
sentence = "Groenlinks praat over Schiphol."
|
|
ner = pipeline("ner", model="xlm-roberta-large-finetuned-conll02-dutch", aggregation_strategy="max")
|
|
self.assertEqual(
|
|
nested_simplify(ner(sentence)),
|
|
[
|
|
{"end": 10, "entity_group": "ORG", "score": 0.994, "start": 0, "word": "Groenlinks"},
|
|
{"entity_group": "LOC", "score": 1.0, "word": "Schiphol.", "start": 22, "end": 31},
|
|
],
|
|
)
|
|
|
|
@require_torch
|
|
def test_aggregation_strategy_no_b_i_prefix(self):
|
|
model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
|
token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
|
|
# Just to understand scores indexes in this test
|
|
token_classifier.model.config.id2label = {0: "O", 1: "MISC", 2: "PER", 3: "ORG", 4: "LOC"}
|
|
example = [
|
|
{
|
|
# fmt : off
|
|
"scores": np.array([0, 0, 0, 0, 0.9968166351318359]),
|
|
"index": 1,
|
|
"is_subword": False,
|
|
"word": "En",
|
|
"start": 0,
|
|
"end": 2,
|
|
},
|
|
{
|
|
# fmt : off
|
|
"scores": np.array([0, 0, 0, 0, 0.9957635998725891]),
|
|
"index": 2,
|
|
"is_subword": True,
|
|
"word": "##zo",
|
|
"start": 2,
|
|
"end": 4,
|
|
},
|
|
{
|
|
# fmt: off
|
|
"scores": np.array([0, 0, 0, 0.9986497163772583, 0]),
|
|
# fmt: on
|
|
"index": 7,
|
|
"word": "UN",
|
|
"is_subword": False,
|
|
"start": 11,
|
|
"end": 13,
|
|
},
|
|
]
|
|
self.assertEqual(
|
|
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.NONE)),
|
|
[
|
|
{"end": 2, "entity": "LOC", "score": 0.997, "start": 0, "word": "En", "index": 1},
|
|
{"end": 4, "entity": "LOC", "score": 0.996, "start": 2, "word": "##zo", "index": 2},
|
|
{"end": 13, "entity": "ORG", "score": 0.999, "start": 11, "word": "UN", "index": 7},
|
|
],
|
|
)
|
|
self.assertEqual(
|
|
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.SIMPLE)),
|
|
[
|
|
{"entity_group": "LOC", "score": 0.996, "word": "Enzo", "start": 0, "end": 4},
|
|
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
|
|
],
|
|
)
|
|
|
|
@require_torch
|
|
def test_aggregation_strategy(self):
|
|
model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
|
token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
|
|
# Just to understand scores indexes in this test
|
|
self.assertEqual(
|
|
token_classifier.model.config.id2label,
|
|
{0: "O", 1: "B-MISC", 2: "I-MISC", 3: "B-PER", 4: "I-PER", 5: "B-ORG", 6: "I-ORG", 7: "B-LOC", 8: "I-LOC"},
|
|
)
|
|
example = [
|
|
{
|
|
# fmt : off
|
|
"scores": np.array([0, 0, 0, 0, 0.9968166351318359, 0, 0, 0]),
|
|
"index": 1,
|
|
"is_subword": False,
|
|
"word": "En",
|
|
"start": 0,
|
|
"end": 2,
|
|
},
|
|
{
|
|
# fmt : off
|
|
"scores": np.array([0, 0, 0, 0, 0.9957635998725891, 0, 0, 0]),
|
|
"index": 2,
|
|
"is_subword": True,
|
|
"word": "##zo",
|
|
"start": 2,
|
|
"end": 4,
|
|
},
|
|
{
|
|
# fmt: off
|
|
"scores": np.array([0, 0, 0, 0, 0, 0.9986497163772583, 0, 0, ]),
|
|
# fmt: on
|
|
"index": 7,
|
|
"word": "UN",
|
|
"is_subword": False,
|
|
"start": 11,
|
|
"end": 13,
|
|
},
|
|
]
|
|
self.assertEqual(
|
|
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.NONE)),
|
|
[
|
|
{"end": 2, "entity": "I-PER", "score": 0.997, "start": 0, "word": "En", "index": 1},
|
|
{"end": 4, "entity": "I-PER", "score": 0.996, "start": 2, "word": "##zo", "index": 2},
|
|
{"end": 13, "entity": "B-ORG", "score": 0.999, "start": 11, "word": "UN", "index": 7},
|
|
],
|
|
)
|
|
self.assertEqual(
|
|
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.SIMPLE)),
|
|
[
|
|
{"entity_group": "PER", "score": 0.996, "word": "Enzo", "start": 0, "end": 4},
|
|
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
|
|
],
|
|
)
|
|
self.assertEqual(
|
|
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.FIRST)),
|
|
[
|
|
{"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4},
|
|
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
|
|
],
|
|
)
|
|
self.assertEqual(
|
|
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.MAX)),
|
|
[
|
|
{"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4},
|
|
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
|
|
],
|
|
)
|
|
self.assertEqual(
|
|
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.AVERAGE)),
|
|
[
|
|
{"entity_group": "PER", "score": 0.996, "word": "Enzo", "start": 0, "end": 4},
|
|
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
|
|
],
|
|
)
|
|
|
|
@require_torch
|
|
def test_aggregation_strategy_example2(self):
|
|
model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
|
token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
|
|
# Just to understand scores indexes in this test
|
|
self.assertEqual(
|
|
token_classifier.model.config.id2label,
|
|
{0: "O", 1: "B-MISC", 2: "I-MISC", 3: "B-PER", 4: "I-PER", 5: "B-ORG", 6: "I-ORG", 7: "B-LOC", 8: "I-LOC"},
|
|
)
|
|
example = [
|
|
{
|
|
# Necessary for AVERAGE
|
|
"scores": np.array([0, 0.55, 0, 0.45, 0, 0, 0, 0, 0, 0]),
|
|
"is_subword": False,
|
|
"index": 1,
|
|
"word": "Ra",
|
|
"start": 0,
|
|
"end": 2,
|
|
},
|
|
{
|
|
"scores": np.array([0, 0, 0, 0.2, 0, 0, 0, 0.8, 0, 0]),
|
|
"is_subword": True,
|
|
"word": "##ma",
|
|
"start": 2,
|
|
"end": 4,
|
|
"index": 2,
|
|
},
|
|
{
|
|
# 4th score will have the higher average
|
|
# 4th score is B-PER for this model
|
|
# It's does not correspond to any of the subtokens.
|
|
"scores": np.array([0, 0, 0, 0.4, 0, 0, 0.6, 0, 0, 0]),
|
|
"is_subword": True,
|
|
"word": "##zotti",
|
|
"start": 11,
|
|
"end": 13,
|
|
"index": 3,
|
|
},
|
|
]
|
|
self.assertEqual(
|
|
token_classifier.aggregate(example, AggregationStrategy.NONE),
|
|
[
|
|
{"end": 2, "entity": "B-MISC", "score": 0.55, "start": 0, "word": "Ra", "index": 1},
|
|
{"end": 4, "entity": "B-LOC", "score": 0.8, "start": 2, "word": "##ma", "index": 2},
|
|
{"end": 13, "entity": "I-ORG", "score": 0.6, "start": 11, "word": "##zotti", "index": 3},
|
|
],
|
|
)
|
|
|
|
self.assertEqual(
|
|
token_classifier.aggregate(example, AggregationStrategy.FIRST),
|
|
[{"entity_group": "MISC", "score": 0.55, "word": "Ramazotti", "start": 0, "end": 13}],
|
|
)
|
|
self.assertEqual(
|
|
token_classifier.aggregate(example, AggregationStrategy.MAX),
|
|
[{"entity_group": "LOC", "score": 0.8, "word": "Ramazotti", "start": 0, "end": 13}],
|
|
)
|
|
self.assertEqual(
|
|
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.AVERAGE)),
|
|
[{"entity_group": "PER", "score": 0.35, "word": "Ramazotti", "start": 0, "end": 13}],
|
|
)
|
|
|
|
@require_torch
|
|
@slow
|
|
def test_aggregation_strategy_offsets_with_leading_space(self):
|
|
sentence = "We're from New York"
|
|
model_name = "brandon25/deberta-base-finetuned-ner"
|
|
ner = pipeline("ner", model=model_name, ignore_labels=[], aggregation_strategy="max")
|
|
self.assertEqual(
|
|
nested_simplify(ner(sentence)),
|
|
[
|
|
{"entity_group": "O", "score": 1.0, "word": " We're from", "start": 0, "end": 10},
|
|
{"entity_group": "LOC", "score": 1.0, "word": " New York", "start": 10, "end": 19},
|
|
],
|
|
)
|
|
|
|
@require_torch
|
|
def test_gather_pre_entities(self):
|
|
model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
|
token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
|
|
|
|
sentence = "Hello there"
|
|
|
|
tokens = tokenizer(
|
|
sentence,
|
|
return_attention_mask=False,
|
|
return_tensors="pt",
|
|
truncation=True,
|
|
return_special_tokens_mask=True,
|
|
return_offsets_mapping=True,
|
|
)
|
|
offset_mapping = tokens.pop("offset_mapping").cpu().numpy()[0]
|
|
special_tokens_mask = tokens.pop("special_tokens_mask").cpu().numpy()[0]
|
|
input_ids = tokens["input_ids"].numpy()[0]
|
|
# First element in [CLS]
|
|
scores = np.array([[1, 0, 0], [0.1, 0.3, 0.6], [0.8, 0.1, 0.1]])
|
|
|
|
pre_entities = token_classifier.gather_pre_entities(
|
|
sentence,
|
|
input_ids,
|
|
scores,
|
|
offset_mapping,
|
|
special_tokens_mask,
|
|
aggregation_strategy=AggregationStrategy.NONE,
|
|
)
|
|
self.assertEqual(
|
|
nested_simplify(pre_entities),
|
|
[
|
|
{"word": "Hello", "scores": [0.1, 0.3, 0.6], "start": 0, "end": 5, "is_subword": False, "index": 1},
|
|
{
|
|
"word": "there",
|
|
"scores": [0.8, 0.1, 0.1],
|
|
"index": 2,
|
|
"start": 6,
|
|
"end": 11,
|
|
"is_subword": False,
|
|
},
|
|
],
|
|
)
|
|
|
|
@require_torch
|
|
def test_word_heuristic_leading_space(self):
|
|
model_name = "hf-internal-testing/tiny-random-deberta-v2"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
|
token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
|
|
|
|
sentence = "I play the theremin"
|
|
|
|
tokens = tokenizer(
|
|
sentence,
|
|
return_attention_mask=False,
|
|
return_tensors="pt",
|
|
return_special_tokens_mask=True,
|
|
return_offsets_mapping=True,
|
|
)
|
|
offset_mapping = tokens.pop("offset_mapping").cpu().numpy()[0]
|
|
special_tokens_mask = tokens.pop("special_tokens_mask").cpu().numpy()[0]
|
|
input_ids = tokens["input_ids"].numpy()[0]
|
|
scores = np.array([[1, 0] for _ in input_ids]) # values irrelevant for heuristic
|
|
|
|
pre_entities = token_classifier.gather_pre_entities(
|
|
sentence,
|
|
input_ids,
|
|
scores,
|
|
offset_mapping,
|
|
special_tokens_mask,
|
|
aggregation_strategy=AggregationStrategy.FIRST,
|
|
)
|
|
|
|
# ensure expected tokenization and correct is_subword values
|
|
self.assertEqual(
|
|
[(entity["word"], entity["is_subword"]) for entity in pre_entities],
|
|
[("▁I", False), ("▁play", False), ("▁the", False), ("▁there", False), ("min", True)],
|
|
)
|
|
|
|
@require_tf
|
|
def test_tf_only(self):
|
|
model_name = "hf-internal-testing/tiny-random-bert-tf-only" # This model only has a TensorFlow version
|
|
# We test that if we don't specificy framework='tf', it gets detected automatically
|
|
token_classifier = pipeline(task="ner", model=model_name)
|
|
self.assertEqual(token_classifier.framework, "tf")
|
|
|
|
@require_tf
|
|
def test_small_model_tf(self):
|
|
model_name = "hf-internal-testing/tiny-bert-for-token-classification"
|
|
token_classifier = pipeline(task="token-classification", model=model_name, framework="tf")
|
|
outputs = token_classifier("This is a test !")
|
|
self.assertEqual(
|
|
nested_simplify(outputs),
|
|
[
|
|
{"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 4},
|
|
{"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 5, "end": 7},
|
|
],
|
|
)
|
|
|
|
@require_torch
|
|
def test_no_offset_tokenizer(self):
|
|
model_name = "hf-internal-testing/tiny-bert-for-token-classification"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
|
|
token_classifier = pipeline(task="token-classification", model=model_name, tokenizer=tokenizer, framework="pt")
|
|
outputs = token_classifier("This is a test !")
|
|
self.assertEqual(
|
|
nested_simplify(outputs),
|
|
[
|
|
{"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": None, "end": None},
|
|
{"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": None, "end": None},
|
|
],
|
|
)
|
|
|
|
@require_torch
|
|
def test_small_model_pt(self):
|
|
model_name = "hf-internal-testing/tiny-bert-for-token-classification"
|
|
token_classifier = pipeline(task="token-classification", model=model_name, framework="pt")
|
|
outputs = token_classifier("This is a test !")
|
|
self.assertEqual(
|
|
nested_simplify(outputs),
|
|
[
|
|
{"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 4},
|
|
{"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 5, "end": 7},
|
|
],
|
|
)
|
|
|
|
token_classifier = pipeline(
|
|
task="token-classification", model=model_name, framework="pt", ignore_labels=["O", "I-MISC"]
|
|
)
|
|
outputs = token_classifier("This is a test !")
|
|
self.assertEqual(
|
|
nested_simplify(outputs),
|
|
[],
|
|
)
|
|
|
|
token_classifier = pipeline(task="token-classification", model=model_name, framework="pt")
|
|
# Overload offset_mapping
|
|
outputs = token_classifier(
|
|
"This is a test !", offset_mapping=[(0, 0), (0, 1), (0, 2), (0, 0), (0, 0), (0, 0), (0, 0)]
|
|
)
|
|
self.assertEqual(
|
|
nested_simplify(outputs),
|
|
[
|
|
{"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 1},
|
|
{"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 0, "end": 2},
|
|
],
|
|
)
|
|
|
|
# Batch size does not affect outputs (attention_mask are required)
|
|
sentences = ["This is a test !", "Another test this is with longer sentence"]
|
|
outputs = token_classifier(sentences)
|
|
outputs_batched = token_classifier(sentences, batch_size=2)
|
|
# Batching does not make a difference in predictions
|
|
self.assertEqual(nested_simplify(outputs_batched), nested_simplify(outputs))
|
|
self.assertEqual(
|
|
nested_simplify(outputs_batched),
|
|
[
|
|
[
|
|
{"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 4},
|
|
{"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 5, "end": 7},
|
|
],
|
|
[],
|
|
],
|
|
)
|
|
|
|
@require_torch
|
|
def test_pt_ignore_subwords_slow_tokenizer_raises(self):
|
|
model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
|
|
|
|
with self.assertRaises(ValueError):
|
|
pipeline(task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.FIRST)
|
|
with self.assertRaises(ValueError):
|
|
pipeline(
|
|
task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.AVERAGE
|
|
)
|
|
with self.assertRaises(ValueError):
|
|
pipeline(task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.MAX)
|
|
|
|
@slow
|
|
@require_torch
|
|
def test_simple(self):
|
|
token_classifier = pipeline(task="ner", model="dslim/bert-base-NER", grouped_entities=True)
|
|
sentence = "Hello Sarah Jessica Parker who Jessica lives in New York"
|
|
sentence2 = "This is a simple test"
|
|
output = token_classifier(sentence)
|
|
|
|
output_ = nested_simplify(output)
|
|
|
|
self.assertEqual(
|
|
output_,
|
|
[
|
|
{
|
|
"entity_group": "PER",
|
|
"score": 0.996,
|
|
"word": "Sarah Jessica Parker",
|
|
"start": 6,
|
|
"end": 26,
|
|
},
|
|
{"entity_group": "PER", "score": 0.977, "word": "Jessica", "start": 31, "end": 38},
|
|
{"entity_group": "LOC", "score": 0.999, "word": "New York", "start": 48, "end": 56},
|
|
],
|
|
)
|
|
|
|
output = token_classifier([sentence, sentence2])
|
|
output_ = nested_simplify(output)
|
|
|
|
self.assertEqual(
|
|
output_,
|
|
[
|
|
[
|
|
{"entity_group": "PER", "score": 0.996, "word": "Sarah Jessica Parker", "start": 6, "end": 26},
|
|
{"entity_group": "PER", "score": 0.977, "word": "Jessica", "start": 31, "end": 38},
|
|
{"entity_group": "LOC", "score": 0.999, "word": "New York", "start": 48, "end": 56},
|
|
],
|
|
[],
|
|
],
|
|
)
|
|
|
|
|
|
class TokenClassificationArgumentHandlerTestCase(unittest.TestCase):
|
|
def setUp(self):
|
|
self.args_parser = TokenClassificationArgumentHandler()
|
|
|
|
def test_simple(self):
|
|
string = "This is a simple input"
|
|
|
|
inputs, offset_mapping = self.args_parser(string)
|
|
self.assertEqual(inputs, [string])
|
|
self.assertEqual(offset_mapping, None)
|
|
|
|
inputs, offset_mapping = self.args_parser([string, string])
|
|
self.assertEqual(inputs, [string, string])
|
|
self.assertEqual(offset_mapping, None)
|
|
|
|
inputs, offset_mapping = self.args_parser(string, offset_mapping=[(0, 1), (1, 2)])
|
|
self.assertEqual(inputs, [string])
|
|
self.assertEqual(offset_mapping, [[(0, 1), (1, 2)]])
|
|
|
|
inputs, offset_mapping = self.args_parser(
|
|
[string, string], offset_mapping=[[(0, 1), (1, 2)], [(0, 2), (2, 3)]]
|
|
)
|
|
self.assertEqual(inputs, [string, string])
|
|
self.assertEqual(offset_mapping, [[(0, 1), (1, 2)], [(0, 2), (2, 3)]])
|
|
|
|
def test_errors(self):
|
|
string = "This is a simple input"
|
|
|
|
# 2 sentences, 1 offset_mapping, args
|
|
with self.assertRaises(TypeError):
|
|
self.args_parser(string, string, offset_mapping=[[(0, 1), (1, 2)]])
|
|
|
|
# 2 sentences, 1 offset_mapping, args
|
|
with self.assertRaises(TypeError):
|
|
self.args_parser(string, string, offset_mapping=[(0, 1), (1, 2)])
|
|
|
|
# 2 sentences, 1 offset_mapping, input_list
|
|
with self.assertRaises(ValueError):
|
|
self.args_parser([string, string], offset_mapping=[[(0, 1), (1, 2)]])
|
|
|
|
# 2 sentences, 1 offset_mapping, input_list
|
|
with self.assertRaises(ValueError):
|
|
self.args_parser([string, string], offset_mapping=[(0, 1), (1, 2)])
|
|
|
|
# 1 sentences, 2 offset_mapping
|
|
with self.assertRaises(ValueError):
|
|
self.args_parser(string, offset_mapping=[[(0, 1), (1, 2)], [(0, 2), (2, 3)]])
|
|
|
|
# 0 sentences, 1 offset_mapping
|
|
with self.assertRaises(TypeError):
|
|
self.args_parser(offset_mapping=[[(0, 1), (1, 2)]])
|