transformers/tests/models/gemma3/test_processing_gemma3.py

152 lines
7.2 KiB
Python

# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
import tempfile
import unittest
from typing import Optional
from transformers import Gemma3Processor, GemmaTokenizer
from transformers.testing_utils import get_tests_dir, require_vision
from transformers.utils import is_vision_available
from ...test_processing_common import ProcessorTesterMixin
if is_vision_available():
from transformers import Gemma3ImageProcessor
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")
@require_vision
class Gemma3ProcessorTest(ProcessorTesterMixin, unittest.TestCase):
processor_class = Gemma3Processor
@classmethod
def setUpClass(cls):
cls.tmpdirname = tempfile.mkdtemp()
gemma3_image_processor_kwargs = {
"do_pan_and_scan": True,
"pan_and_scan_min_crop_size": 256,
"pan_and_scan_max_num_crops": 4,
"pan_and_scan_min_ratio_to_activate": 1.2,
}
image_processor = Gemma3ImageProcessor.from_pretrained(
"google/siglip-so400m-patch14-384", **gemma3_image_processor_kwargs
)
extra_special_tokens = {
"image_token": "<image_soft_token>",
"boi_token": "<start_of_image>",
"eoi_token": "<end_of_image>",
}
tokenizer = GemmaTokenizer(SAMPLE_VOCAB, keep_accents=True, extra_special_tokens=extra_special_tokens)
processor_kwargs = cls.prepare_processor_dict()
processor = Gemma3Processor(image_processor=image_processor, tokenizer=tokenizer, **processor_kwargs)
processor.save_pretrained(cls.tmpdirname)
cls.image_token = processor.boi_token
@classmethod
def tearDownClass(cls):
shutil.rmtree(cls.tmpdirname, ignore_errors=True)
# TODO: raushan or arthur: add the real chat template
@staticmethod
def prepare_processor_dict():
return {
"chat_template": "{{ bos_token }}\n{%- if messages[0]['role'] == 'system' -%}\n {%- set first_user_prefix = messages[0]['content'][0]['text'] + '\n\n' -%}\n {%- set loop_messages = messages[1:] -%}\n{%- else -%}\n {%- set first_user_prefix = \"\" -%}\n {%- set loop_messages = messages -%}\n{%- endif -%}\n{%- for message in loop_messages -%}\n {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}\n {{ raise_exception(\"Conversation roles must alternate user/assistant/user/assistant/...\") }}\n {%- endif -%}\n {%- if (message['role'] == 'assistant') -%}\n {%- set role = \"model\" -%}\n {%- else -%}\n {%- set role = message['role'] -%}\n {%- endif -%}\n {{ '<start_of_turn>' + role + '\n' + (first_user_prefix if loop.first else \"\") }}\n {%- if message['content'] is string -%}\n {{ message['content'] | trim }}\n {%- elif message['content'] is iterable -%}\n {%- for item in message['content'] -%}\n {%- if item['type'] == 'image' -%}\n {{ '<start_of_image>' }}\n {%- elif item['type'] == 'text' -%}\n {{ item['text'] | trim }}\n {%- endif -%}\n {%- endfor -%}\n {%- else -%}\n {{ raise_exception(\"Invalid content type\") }}\n {%- endif -%}\n {{ '<end_of_turn>\n' }}\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n {{'<start_of_turn>model\n'}}\n{%- endif -%}\n", "image_seq_length": 3,
} # fmt: skip
# Override as Gemma3 needs images to be an explicitly nested batch
def prepare_image_inputs(self, batch_size: Optional[int] = None):
"""This function prepares a list of PIL images for testing"""
images = super().prepare_image_inputs(batch_size)
if isinstance(images, (list, tuple)):
images = [[image] for image in images]
return images
def test_text_with_image_tokens(self):
image_processor = self.get_component("image_processor")
tokenizer = self.get_component("tokenizer")
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
text_multi_images = f"{processor.boi_token}{processor.boi_token}Dummy text!"
text_single_image = f"{processor.boi_token}Dummy text!"
text_no_image = "Dummy text!"
image = self.prepare_image_inputs()
# If text has no image tokens, image should be `None`
with self.assertRaises(ValueError):
_ = processor(text=text_no_image, images=image, return_tensors="np")
# We can't be sure what is users intention: if user wants one image per text OR two images for first text and no image for second text
with self.assertRaises(ValueError):
_ = processor(text=[text_single_image, text_single_image], images=[image, image], return_tensors="np")
# The users is expected to be explicit about which image belong to which text by nesting the images list
out_multiimages = processor(text=text_multi_images, images=[image, image], return_tensors="np")
out_batch_oneimage = processor(
text=[text_single_image, text_single_image], images=[[image], [image]], return_tensors="np"
)
self.assertListEqual(
out_batch_oneimage[self.images_input_name].tolist(), out_multiimages[self.images_input_name].tolist()
)
def test_pan_and_scan(self):
processor_components = self.prepare_components()
processor_kwargs = self.prepare_processor_dict()
processor = self.processor_class(**processor_components, **processor_kwargs)
input_str = self.prepare_text_inputs(modality="image")
image_input = self.prepare_image_inputs()
inputs = processor(
text=input_str,
images=image_input,
return_tensors="np",
do_pan_and_scan=True,
image_seq_length=2,
pan_and_scan_min_crop_size=10,
)
# base image + 4 crops
self.assertEqual(len(inputs[self.images_input_name]), 5)
self.assertEqual(len(inputs[self.text_input_name][0]), 67)
def test_special_mm_token_truncation(self):
"""Tests that special vision tokens do not get truncated when `truncation=True` is set."""
processor = self.get_processor()
input_str = self.prepare_text_inputs(batch_size=2, modality="image")
image_input = self.prepare_image_inputs(batch_size=2)
_ = processor(
text=input_str,
images=image_input,
return_tensors="pt",
truncation=None,
padding=True,
)
with self.assertRaises(ValueError):
_ = processor(
text=input_str,
images=image_input,
return_tensors="pt",
truncation=True,
padding=True,
max_length=5,
)