transformers/tests/utils/test_import_structure.py
Lysandre Debut 23d79cea75
Support for version spec in requires & arbitrary mismatching depths across folders (#37854)
* Support for version spec in requires & arbitrary mismatching depths

* Quality

* Testing
2025-05-09 15:26:27 +02:00

209 lines
9.7 KiB
Python

import os
import unittest
from pathlib import Path
from typing import Callable
import pytest
from transformers.utils.import_utils import (
Backend,
VersionComparison,
define_import_structure,
spread_import_structure,
)
import_structures = Path(__file__).parent / "import_structures"
def fetch__all__(file_content):
"""
Returns the content of the __all__ variable in the file content.
Returns None if not defined, otherwise returns a list of strings.
"""
lines = file_content.split("\n")
for line_index in range(len(lines)):
line = lines[line_index]
if line.startswith("__all__ = "):
# __all__ is defined on a single line
if line.endswith("]"):
return [obj.strip("\"' ") for obj in line.split("=")[1].strip(" []").split(",")]
# __all__ is defined on multiple lines
else:
_all = []
for __all__line_index in range(line_index + 1, len(lines)):
if lines[__all__line_index].strip() == "]":
return _all
else:
_all.append(lines[__all__line_index].strip("\"', "))
class TestImportStructures(unittest.TestCase):
base_transformers_path = Path(__file__).parent.parent.parent
models_path = base_transformers_path / "src" / "transformers" / "models"
models_import_structure = spread_import_structure(define_import_structure(models_path))
def test_definition(self):
import_structure = define_import_structure(import_structures)
valid_frozensets: dict[frozenset | frozenset[str], dict[str, set[str]]] = {
frozenset(): {
"import_structure_raw_register": {"A0", "A4", "a0"},
"import_structure_register_with_comments": {"B0", "b0"},
},
frozenset({"random_item_that_should_not_exist"}): {"failing_export": {"A0"}},
frozenset({"torch"}): {
"import_structure_register_with_duplicates": {"C0", "C1", "C2", "C3", "c0", "c1", "c2", "c3"}
},
frozenset({"tf", "torch"}): {
"import_structure_raw_register": {"A1", "A2", "A3", "a1", "a2", "a3"},
"import_structure_register_with_comments": {"B1", "B2", "B3", "b1", "b2", "b3"},
},
frozenset({"torch>=2.5"}): {"import_structure_raw_register_with_versions": {"D0", "d0"}},
frozenset({"torch>2.5"}): {"import_structure_raw_register_with_versions": {"D1", "d1"}},
frozenset({"torch<=2.5"}): {"import_structure_raw_register_with_versions": {"D2", "d2"}},
frozenset({"torch<2.5"}): {"import_structure_raw_register_with_versions": {"D3", "d3"}},
frozenset({"torch==2.5"}): {"import_structure_raw_register_with_versions": {"D4", "d4"}},
frozenset({"torch!=2.5"}): {"import_structure_raw_register_with_versions": {"D5", "d5"}},
frozenset({"torch>=2.5", "accelerate<0.20"}): {
"import_structure_raw_register_with_versions": {"D6", "d6"}
},
}
self.assertEqual(len(import_structure.keys()), len(valid_frozensets.keys()))
for _frozenset in valid_frozensets.keys():
self.assertTrue(_frozenset in import_structure)
self.assertListEqual(list(import_structure[_frozenset].keys()), list(valid_frozensets[_frozenset].keys()))
for module, objects in valid_frozensets[_frozenset].items():
self.assertTrue(module in import_structure[_frozenset])
self.assertSetEqual(objects, import_structure[_frozenset][module])
def test_transformers_specific_model_import(self):
"""
This test ensures that there is equivalence between what is written down in __all__ and what is
written down with register().
It doesn't test the backends attributed to register().
"""
for architecture in os.listdir(self.models_path):
if (
os.path.isfile(self.models_path / architecture)
or architecture.startswith("_")
or architecture == "deprecated"
):
continue
with self.subTest(f"Testing arch {architecture}"):
import_structure = define_import_structure(self.models_path / architecture)
backend_agnostic_import_structure = {}
for requirement, module_object_mapping in import_structure.items():
for module, objects in module_object_mapping.items():
if module not in backend_agnostic_import_structure:
backend_agnostic_import_structure[module] = []
backend_agnostic_import_structure[module].extend(objects)
for module, objects in backend_agnostic_import_structure.items():
with open(self.models_path / architecture / f"{module}.py") as f:
content = f.read()
_all = fetch__all__(content)
if _all is None:
raise ValueError(f"{module} doesn't have __all__ defined.")
error_message = (
f"self.models_path / architecture / f'{module}.py doesn't seem to be defined correctly:\n"
f"Defined in __all__: {sorted(_all)}\nDefined with register: {sorted(objects)}"
)
self.assertListEqual(sorted(objects), sorted(_all), msg=error_message)
def test_import_spread(self):
"""
This test is specifically designed to test that varying levels of depth across import structures are
respected.
In this instance, frozensets are at respective depths of 1, 2 and 3, for example:
- models.{frozensets}
- models.albert.{frozensets}
- models.deprecated.transfo_xl.{frozensets}
"""
initial_import_structure = {
frozenset(): {"dummy_non_model": {"DummyObject"}},
"models": {
frozenset(): {"dummy_config": {"DummyConfig"}},
"albert": {
frozenset(): {"configuration_albert": {"AlbertConfig", "AlbertOnnxConfig"}},
frozenset({"torch"}): {
"modeling_albert": {
"AlbertForMaskedLM",
}
},
},
"llama": {
frozenset(): {"configuration_llama": {"LlamaConfig"}},
frozenset({"torch"}): {
"modeling_llama": {
"LlamaForCausalLM",
}
},
},
"deprecated": {
"transfo_xl": {
frozenset({"torch"}): {
"modeling_transfo_xl": {
"TransfoXLModel",
}
},
frozenset(): {
"configuration_transfo_xl": {"TransfoXLConfig"},
"tokenization_transfo_xl": {"TransfoXLCorpus", "TransfoXLTokenizer"},
},
},
"deta": {
frozenset({"torch"}): {
"modeling_deta": {"DetaForObjectDetection", "DetaModel", "DetaPreTrainedModel"}
},
frozenset(): {"configuration_deta": {"DetaConfig"}},
frozenset({"vision"}): {"image_processing_deta": {"DetaImageProcessor"}},
},
},
},
}
ground_truth_spread_import_structure = {
frozenset(): {
"dummy_non_model": {"DummyObject"},
"models.dummy_config": {"DummyConfig"},
"models.albert.configuration_albert": {"AlbertConfig", "AlbertOnnxConfig"},
"models.llama.configuration_llama": {"LlamaConfig"},
"models.deprecated.transfo_xl.configuration_transfo_xl": {"TransfoXLConfig"},
"models.deprecated.transfo_xl.tokenization_transfo_xl": {"TransfoXLCorpus", "TransfoXLTokenizer"},
"models.deprecated.deta.configuration_deta": {"DetaConfig"},
},
frozenset({"torch"}): {
"models.albert.modeling_albert": {"AlbertForMaskedLM"},
"models.llama.modeling_llama": {"LlamaForCausalLM"},
"models.deprecated.transfo_xl.modeling_transfo_xl": {"TransfoXLModel"},
"models.deprecated.deta.modeling_deta": {"DetaForObjectDetection", "DetaModel", "DetaPreTrainedModel"},
},
frozenset({"vision"}): {"models.deprecated.deta.image_processing_deta": {"DetaImageProcessor"}},
}
newly_spread_import_structure = spread_import_structure(initial_import_structure)
self.assertEqual(ground_truth_spread_import_structure, newly_spread_import_structure)
@pytest.mark.parametrize(
"backend,package_name,version_comparison,version",
[
pytest.param(Backend("torch>=2.5 "), "torch", VersionComparison.GREATER_THAN_OR_EQUAL.value, "2.5"),
pytest.param(Backend("tf<=1"), "tf", VersionComparison.LESS_THAN_OR_EQUAL.value, "1"),
pytest.param(Backend("torchvision==0.19.1"), "torchvision", VersionComparison.EQUAL.value, "0.19.1"),
],
)
def test_backend_specification(backend: Backend, package_name: str, version_comparison: Callable, version: str):
assert backend.package_name == package_name
assert VersionComparison.from_string(backend.version_comparison) == version_comparison
assert backend.version == version