mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-12 17:20:03 +06:00

* Squash all commits of modeling_detr_v7 branch into one * Improve docs * Fix tests * Style * Improve docs some more and fix most tests * Fix slow tests of ViT, DeiT and DETR * Improve replacement of batch norm * Restructure timm backbone forward * Make DetrForSegmentation support any timm backbone * Fix name of output * Address most comments by @LysandreJik * Give better names for variables * Conditional imports + timm in setup.py * Address additional comments by @sgugger * Make style, add require_timm and require_vision to testsé * Remove train_backbone attribute of DetrConfig, add methods to freeze/unfreeze backbone * Add png files to fixtures * Fix type hint * Add timm to workflows * Add `BatchNorm2d` to the weight initialization * Fix retain_grad test * Replace model checkpoints by Facebook namespace * Fix name of checkpoint in test * Add user-friendly message when scipy is not available * Address most comments by @patrickvonplaten * Remove return_intermediate_layers attribute of DetrConfig and simplify Joiner * Better initialization * Scipy is necessary to get sklearn metrics * Rename TimmBackbone to DetrTimmConvEncoder and rename DetrJoiner to DetrConvModel * Make style * Improve docs and add 2 community notebooks Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
131 lines
5.3 KiB
Python
131 lines
5.3 KiB
Python
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
from transformers import (
|
|
AutoFeatureExtractor,
|
|
AutoModelForImageClassification,
|
|
PreTrainedTokenizer,
|
|
is_vision_available,
|
|
)
|
|
from transformers.pipelines import ImageClassificationPipeline, pipeline
|
|
from transformers.testing_utils import require_torch, require_vision
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
else:
|
|
|
|
class Image:
|
|
@staticmethod
|
|
def open(*args, **kwargs):
|
|
pass
|
|
|
|
|
|
@require_vision
|
|
@require_torch
|
|
class ImageClassificationPipelineTests(unittest.TestCase):
|
|
pipeline_task = "image-classification"
|
|
small_models = ["lysandre/tiny-vit-random"] # Models tested without the @slow decorator
|
|
valid_inputs = [
|
|
{"images": "http://images.cocodataset.org/val2017/000000039769.jpg"},
|
|
{
|
|
"images": [
|
|
"http://images.cocodataset.org/val2017/000000039769.jpg",
|
|
"http://images.cocodataset.org/val2017/000000039769.jpg",
|
|
]
|
|
},
|
|
{"images": "./tests/fixtures/tests_samples/COCO/000000039769.png"},
|
|
{
|
|
"images": [
|
|
"./tests/fixtures/tests_samples/COCO/000000039769.png",
|
|
"./tests/fixtures/tests_samples/COCO/000000039769.png",
|
|
]
|
|
},
|
|
{"images": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")},
|
|
{
|
|
"images": [
|
|
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
|
|
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
|
|
]
|
|
},
|
|
{
|
|
"images": [
|
|
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
|
|
"./tests/fixtures/tests_samples/COCO/000000039769.png",
|
|
]
|
|
},
|
|
]
|
|
|
|
def test_small_model_from_factory(self):
|
|
for small_model in self.small_models:
|
|
|
|
image_classifier = pipeline("image-classification", model=small_model)
|
|
|
|
for valid_input in self.valid_inputs:
|
|
output = image_classifier(**valid_input)
|
|
top_k = valid_input.get("top_k", 5)
|
|
|
|
def assert_valid_pipeline_output(pipeline_output):
|
|
self.assertTrue(isinstance(pipeline_output, list))
|
|
self.assertEqual(len(pipeline_output), top_k)
|
|
for label_result in pipeline_output:
|
|
self.assertTrue(isinstance(label_result, dict))
|
|
self.assertIn("label", label_result)
|
|
self.assertIn("score", label_result)
|
|
|
|
if isinstance(valid_input["images"], list):
|
|
self.assertEqual(len(valid_input["images"]), len(output))
|
|
for individual_output in output:
|
|
assert_valid_pipeline_output(individual_output)
|
|
else:
|
|
assert_valid_pipeline_output(output)
|
|
|
|
def test_small_model_from_pipeline(self):
|
|
for small_model in self.small_models:
|
|
|
|
model = AutoModelForImageClassification.from_pretrained(small_model)
|
|
feature_extractor = AutoFeatureExtractor.from_pretrained(small_model)
|
|
image_classifier = ImageClassificationPipeline(model=model, feature_extractor=feature_extractor)
|
|
|
|
for valid_input in self.valid_inputs:
|
|
output = image_classifier(**valid_input)
|
|
top_k = valid_input.get("top_k", 5)
|
|
|
|
def assert_valid_pipeline_output(pipeline_output):
|
|
self.assertTrue(isinstance(pipeline_output, list))
|
|
self.assertEqual(len(pipeline_output), top_k)
|
|
for label_result in pipeline_output:
|
|
self.assertTrue(isinstance(label_result, dict))
|
|
self.assertIn("label", label_result)
|
|
self.assertIn("score", label_result)
|
|
|
|
if isinstance(valid_input["images"], list):
|
|
# When images are batched, pipeline output is a list of lists of dictionaries
|
|
self.assertEqual(len(valid_input["images"]), len(output))
|
|
for individual_output in output:
|
|
assert_valid_pipeline_output(individual_output)
|
|
else:
|
|
# When images are batched, pipeline output is a list of dictionaries
|
|
assert_valid_pipeline_output(output)
|
|
|
|
def test_custom_tokenizer(self):
|
|
tokenizer = PreTrainedTokenizer()
|
|
|
|
# Assert that the pipeline can be initialized with a feature extractor that is not in any mapping
|
|
image_classifier = pipeline("image-classification", model=self.small_models[0], tokenizer=tokenizer)
|
|
|
|
self.assertIs(image_classifier.tokenizer, tokenizer)
|