transformers/tests/models/pixtral/test_image_processing_pixtral.py
Yoni Gozlan d29482cc91
Add Idefics2/3 and SmolVLM Fast image processors + improvements for fast image processors (#38157)
* add working idefics2 fast and improvements for fast nested images processing

* add fast image processors idefics 3 and smolvlm

* cleanup tests

* fic doc idefics2

* PR review and fix issues after merge

* Force providing disable_grouping to group_images_by_shape

* simplify group_images_by_shape

* fix modular

* Fix nits after review
2025-06-23 14:17:25 +00:00

287 lines
13 KiB
Python

# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import requests
from packaging import version
from transformers.testing_utils import require_torch, require_torch_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_torchvision_available, is_vision_available
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import PixtralImageProcessor
if is_torchvision_available():
from transformers import PixtralImageProcessorFast
class PixtralImageProcessingTester:
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
image_size=18,
max_num_images_per_sample=3,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=None,
patch_size=None,
do_normalize=True,
image_mean=[0.48145466, 0.4578275, 0.40821073],
image_std=[0.26862954, 0.26130258, 0.27577711],
do_convert_rgb=True,
):
super().__init__()
size = size if size is not None else {"longest_edge": 24}
patch_size = patch_size if patch_size is not None else {"height": 8, "width": 8}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.max_num_images_per_sample = max_num_images_per_sample
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size
self.patch_size = patch_size
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.do_convert_rgb = do_convert_rgb
def prepare_image_processor_dict(self):
return {
"do_resize": self.do_resize,
"size": self.size,
"patch_size": self.patch_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_convert_rgb": self.do_convert_rgb,
}
def expected_output_image_shape(self, images):
if not isinstance(images, (list, tuple)):
images = [images]
batch_size = len(images)
return_height, return_width = 0, 0
for image in images:
if isinstance(image, Image.Image):
width, height = image.size
elif isinstance(image, np.ndarray):
height, width = image.shape[:2]
elif isinstance(image, torch.Tensor):
height, width = image.shape[-2:]
max_height = max_width = self.size.get("longest_edge")
ratio = max(height / max_height, width / max_width)
if ratio > 1:
height = int(np.floor(height / ratio))
width = int(np.floor(width / ratio))
patch_height, patch_width = self.patch_size["height"], self.patch_size["width"]
num_height_tokens = (height - 1) // patch_height + 1
num_width_tokens = (width - 1) // patch_width + 1
return_height = max(num_height_tokens * patch_height, return_height)
return_width = max(num_width_tokens * patch_width, return_width)
return batch_size, self.num_channels, return_height, return_width
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
images = prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
return images
@require_torch
@require_vision
class PixtralImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = PixtralImageProcessor if is_vision_available() else None
fast_image_processing_class = PixtralImageProcessorFast if is_torchvision_available() else None
def setUp(self):
super().setUp()
self.image_processor_tester = PixtralImageProcessingTester(self)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
for image_processing_class in self.image_processor_list:
image_processing = image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "do_resize"))
self.assertTrue(hasattr(image_processing, "size"))
self.assertTrue(hasattr(image_processing, "patch_size"))
self.assertTrue(hasattr(image_processing, "do_rescale"))
self.assertTrue(hasattr(image_processing, "rescale_factor"))
self.assertTrue(hasattr(image_processing, "do_normalize"))
self.assertTrue(hasattr(image_processing, "image_mean"))
self.assertTrue(hasattr(image_processing, "image_std"))
self.assertTrue(hasattr(image_processing, "do_convert_rgb"))
# The following tests are overridden as PixtralImageProcessor can return images of different sizes
# and thus doesn't support returning batched tensors
def test_call_pil(self):
for image_processing_class in self.image_processor_list:
# Initialize image_processing
image_processing = image_processing_class(**self.image_processor_dict)
# create random PIL images
image_inputs_list = self.image_processor_tester.prepare_image_inputs()
for image in image_inputs_list:
self.assertIsInstance(image, Image.Image)
# Test not batched input
encoded_images = image_processing(image_inputs_list[0], return_tensors="pt").pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs_list[0])
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
# Test batched
encoded_images = image_processing(image_inputs_list, return_tensors="pt").pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs_list)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
def test_call_numpy(self):
for image_processing_class in self.image_processor_list:
# Initialize image_processing
image_processing = image_processing_class(**self.image_processor_dict)
# create random numpy tensors
image_inputs_list = self.image_processor_tester.prepare_image_inputs(numpify=True)
for image in image_inputs_list:
self.assertIsInstance(image, np.ndarray)
# Test not batched input
encoded_images = image_processing(image_inputs_list[0], return_tensors="pt").pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs_list[0])
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
# Test batched
batch_encoded_images = image_processing(image_inputs_list, return_tensors="pt").pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs_list)
self.assertEqual(tuple(batch_encoded_images.shape), expected_output_image_shape)
def test_call_pytorch(self):
for image_processing_class in self.image_processor_list:
# Initialize image_processing
image_processing = image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
image_inputs_list = self.image_processor_tester.prepare_image_inputs(torchify=True)
for image in image_inputs_list:
self.assertIsInstance(image, torch.Tensor)
# Test not batched input
encoded_images = image_processing(image_inputs_list[0], return_tensors="pt").pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs_list[0])
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
# Test batched
batch_encoded_images = image_processing(image_inputs_list, return_tensors="pt").pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs_list)
self.assertEqual(tuple(batch_encoded_images.shape), expected_output_image_shape)
@require_vision
@require_torch
def test_slow_fast_equivalence(self):
dummy_image = Image.open(
requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw
)
if not self.test_slow_image_processor or not self.test_fast_image_processor:
self.skipTest(reason="Skipping slow/fast equivalence test")
if self.image_processing_class is None or self.fast_image_processing_class is None:
self.skipTest(reason="Skipping slow/fast equivalence test as one of the image processors is not defined")
image_processor_slow = self.image_processing_class(**self.image_processor_dict)
image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict)
encoding_slow = image_processor_slow(dummy_image, return_tensors="pt")
encoding_fast = image_processor_fast(dummy_image, return_tensors="pt")
self._assert_slow_fast_tensors_equivalence(encoding_slow.pixel_values[0][0], encoding_fast.pixel_values[0][0])
@require_vision
@require_torch
def test_slow_fast_equivalence_batched(self):
dummy_images = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
if not self.test_slow_image_processor or not self.test_fast_image_processor:
self.skipTest(reason="Skipping slow/fast equivalence test")
if self.image_processing_class is None or self.fast_image_processing_class is None:
self.skipTest(reason="Skipping slow/fast equivalence test as one of the image processors is not defined")
if hasattr(self.image_processor_tester, "do_center_crop") and self.image_processor_tester.do_center_crop:
self.skipTest(
reason="Skipping as do_center_crop is True and center_crop functions are not equivalent for fast and slow processors"
)
image_processor_slow = self.image_processing_class(**self.image_processor_dict)
image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict)
encoding_slow = image_processor_slow(dummy_images, return_tensors="pt")
encoding_fast = image_processor_fast(dummy_images, return_tensors="pt")
for i in range(len(encoding_slow.pixel_values)):
self._assert_slow_fast_tensors_equivalence(
encoding_slow.pixel_values[i][0], encoding_fast.pixel_values[i][0]
)
@slow
@require_torch_gpu
@require_vision
def test_can_compile_fast_image_processor(self):
if self.fast_image_processing_class is None:
self.skipTest("Skipping compilation test as fast image processor is not defined")
if version.parse(torch.__version__) < version.parse("2.3"):
self.skipTest(reason="This test requires torch >= 2.3 to run.")
torch.compiler.reset()
input_image = torch.randint(0, 255, (3, 224, 224), dtype=torch.uint8)
image_processor = self.fast_image_processing_class(**self.image_processor_dict)
output_eager = image_processor(input_image, device=torch_device, return_tensors="pt")
image_processor = torch.compile(image_processor, mode="reduce-overhead")
output_compiled = image_processor(input_image, device=torch_device, return_tensors="pt")
self._assert_slow_fast_tensors_equivalence(
output_eager.pixel_values[0][0], output_compiled.pixel_values[0][0], atol=1e-4, rtol=1e-4, mean_atol=1e-5
)
@unittest.skip(reason="PixtralImageProcessor doesn't treat 4 channel PIL and numpy consistently yet") # FIXME Amy
def test_call_numpy_4_channels(self):
pass