mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 21:00:08 +06:00
112 lines
5.0 KiB
Python
112 lines
5.0 KiB
Python
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
from transformers import GemmaTokenizer, PaliGemmaProcessor
|
|
from transformers.testing_utils import get_tests_dir, require_torch, require_vision
|
|
from transformers.utils import is_vision_available
|
|
|
|
from ...test_processing_common import ProcessorTesterMixin
|
|
|
|
|
|
if is_vision_available():
|
|
from transformers import SiglipImageProcessor
|
|
|
|
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")
|
|
|
|
|
|
@require_vision
|
|
class PaliGemmaProcessorTest(ProcessorTesterMixin, unittest.TestCase):
|
|
processor_class = PaliGemmaProcessor
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.tmpdirname = tempfile.mkdtemp()
|
|
image_processor = SiglipImageProcessor.from_pretrained("google/siglip-so400m-patch14-384")
|
|
image_processor.image_seq_length = 0 # TODO: raushan fix me in #37342
|
|
tokenizer = GemmaTokenizer(SAMPLE_VOCAB, keep_accents=True)
|
|
tokenizer.add_special_tokens({"additional_special_tokens": ["<image>"]})
|
|
processor = PaliGemmaProcessor(image_processor=image_processor, tokenizer=tokenizer)
|
|
processor.save_pretrained(cls.tmpdirname)
|
|
cls.image_token = processor.image_token
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
shutil.rmtree(cls.tmpdirname, ignore_errors=True)
|
|
|
|
@require_torch
|
|
@require_vision
|
|
def test_image_seq_length(self):
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
image_processor = self.get_component("image_processor")
|
|
tokenizer = self.get_component("tokenizer", max_length=112, padding="max_length")
|
|
image_processor.image_seq_length = 14
|
|
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
|
|
inputs = processor(
|
|
text=input_str, images=image_input, return_tensors="pt", max_length=112, padding="max_length"
|
|
)
|
|
self.assertEqual(len(inputs["input_ids"][0]), 112)
|
|
|
|
@require_torch
|
|
def test_call_with_suffix(self):
|
|
input_str = "lower newer"
|
|
suffix = "upper older longer string"
|
|
image_input = self.prepare_image_inputs()
|
|
processor = self.get_processor()
|
|
inputs = processor(text=input_str, images=image_input, suffix=suffix)
|
|
self.assertTrue("labels" in inputs)
|
|
self.assertEqual(len(inputs["labels"][0]), len(inputs["input_ids"][0]))
|
|
|
|
inputs = processor(text=input_str, images=image_input, suffix=suffix, return_tensors="pt")
|
|
self.assertTrue("labels" in inputs)
|
|
self.assertEqual(len(inputs["labels"][0]), len(inputs["input_ids"][0]))
|
|
|
|
def test_text_with_image_tokens(self):
|
|
image_processor = self.get_component("image_processor")
|
|
tokenizer = self.get_component("tokenizer")
|
|
|
|
processor = self.processor_class(tokenizer=tokenizer, image_processor=image_processor)
|
|
text_multi_images = "<image><image>Dummy text!"
|
|
text_single_image = "<image>Dummy text!"
|
|
text_no_image = "Dummy text!"
|
|
|
|
image = self.prepare_image_inputs()
|
|
|
|
out_noimage = processor(text=text_no_image, images=image, return_tensors="np")
|
|
out_singlimage = processor(text=text_single_image, images=image, return_tensors="np")
|
|
for k in out_noimage:
|
|
self.assertTrue(out_noimage[k].tolist() == out_singlimage[k].tolist())
|
|
|
|
out_multiimages = processor(text=text_multi_images, images=[image, image], return_tensors="np")
|
|
out_noimage = processor(text=text_no_image, images=[[image, image]], return_tensors="np")
|
|
|
|
# We can't be sure what is users intention, whether user want "one text + two images" or user forgot to add the second text
|
|
with self.assertRaises(ValueError):
|
|
out_noimage = processor(text=text_no_image, images=[image, image], return_tensors="np")
|
|
|
|
for k in out_noimage:
|
|
self.assertTrue(out_noimage[k].tolist() == out_multiimages[k].tolist())
|
|
|
|
text_batched = ["Dummy text!", "Dummy text!"]
|
|
text_batched_with_image = ["<image>Dummy text!", "<image>Dummy text!"]
|
|
out_images = processor(text=text_batched_with_image, images=[image, image], return_tensors="np")
|
|
out_noimage_nested = processor(text=text_batched, images=[[image], [image]], return_tensors="np")
|
|
out_noimage = processor(text=text_batched, images=[image, image], return_tensors="np")
|
|
for k in out_noimage:
|
|
self.assertTrue(out_noimage[k].tolist() == out_images[k].tolist() == out_noimage_nested[k].tolist())
|