transformers/tests/models/donut/test_processor_donut.py
Matt 4d0de5f73a
🚨 🚨 Setup -> setupclass conversion (#37282)
* More limited setup -> setupclass conversion

* make fixup

* Trigger tests

* Fixup UDOP

* Missed a spot

* tearDown -> tearDownClass where appropriate

* Couple more class fixes

* Fixups for UDOP and VisionTextDualEncoder

* Ignore errors when removing the tmpdir, in case it already got cleaned up somewhere

* CLIP fixes

* More correct classmethods

* Wav2Vec2Bert fixes

* More methods become static

* More class methods

* More class methods

* Revert changes for integration tests / modeling files

* Use a different tempdir for tests that actually write to it

* Remove addClassCleanup and just use teardownclass

* Remove changes in modeling files

* Cleanup get_processor_dict() for got_ocr2

* Fix regression on Wav2Vec2BERT test that was masked by this before

* Rework tests that modify the tmpdir

* make fix-copies

* revert clvp modeling test changes

* Fix CLIP processor test

* make fix-copies
2025-04-08 17:15:37 +01:00

64 lines
2.2 KiB
Python

# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
from transformers import DonutImageProcessor, DonutProcessor, XLMRobertaTokenizerFast
from ...test_processing_common import ProcessorTesterMixin
class DonutProcessorTest(ProcessorTesterMixin, unittest.TestCase):
from_pretrained_id = "naver-clova-ix/donut-base"
processor_class = DonutProcessor
@classmethod
def setUpClass(cls):
cls.processor = DonutProcessor.from_pretrained(cls.from_pretrained_id)
cls.tmpdirname = tempfile.mkdtemp()
image_processor = DonutImageProcessor()
tokenizer = XLMRobertaTokenizerFast.from_pretrained(cls.from_pretrained_id)
processor = DonutProcessor(image_processor, tokenizer)
processor.save_pretrained(cls.tmpdirname)
def test_token2json(self):
expected_json = {
"name": "John Doe",
"age": "99",
"city": "Atlanta",
"state": "GA",
"zip": "30301",
"phone": "123-4567",
"nicknames": [{"nickname": "Johnny"}, {"nickname": "JD"}],
"multiline": "text\nwith\nnewlines",
"empty": "",
}
sequence = (
"<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>"
"<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>"
"<s_nicknames><s_nickname>Johnny</s_nickname>"
"<sep/><s_nickname>JD</s_nickname></s_nicknames>"
"<s_multiline>text\nwith\nnewlines</s_multiline>"
"<s_empty></s_empty>"
)
actual_json = self.processor.token2json(sequence)
self.assertDictEqual(actual_json, expected_json)