mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00

* update * apply suggestion * fix tests for main branch * remove unused logger * add special tokens in tests * nit * fix more tests * fix test * pg also
77 lines
2.6 KiB
Python
77 lines
2.6 KiB
Python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch chameleon model."""
|
|
|
|
import tempfile
|
|
import unittest
|
|
|
|
from transformers import ChameleonProcessor, LlamaTokenizer
|
|
from transformers.testing_utils import get_tests_dir
|
|
from transformers.utils import is_vision_available
|
|
|
|
from ...test_processing_common import ProcessorTesterMixin
|
|
|
|
|
|
if is_vision_available():
|
|
from transformers import ChameleonImageProcessor
|
|
|
|
|
|
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")
|
|
|
|
|
|
class ChameleonProcessorTest(ProcessorTesterMixin, unittest.TestCase):
|
|
processor_class = ChameleonProcessor
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.tmpdirname = tempfile.mkdtemp()
|
|
image_processor = ChameleonImageProcessor()
|
|
tokenizer = LlamaTokenizer(vocab_file=SAMPLE_VOCAB)
|
|
tokenizer.pad_token_id = 0
|
|
tokenizer.sep_token_id = 1
|
|
tokenizer.add_special_tokens({"additional_special_tokens": ["<image>"]})
|
|
processor = cls.processor_class(image_processor=image_processor, tokenizer=tokenizer, image_seq_length=2)
|
|
processor.save_pretrained(cls.tmpdirname)
|
|
cls.image_token = processor.image_token
|
|
|
|
def test_special_mm_token_truncation(self):
|
|
"""Tests that special vision tokens do not get truncated when `truncation=True` is set."""
|
|
|
|
processor = self.get_processor()
|
|
|
|
input_str = self.prepare_text_inputs(batch_size=2, modality="image")
|
|
image_input = self.prepare_image_inputs(batch_size=2)
|
|
|
|
_ = processor(
|
|
text=input_str,
|
|
images=image_input,
|
|
return_tensors="pt",
|
|
truncation=None,
|
|
padding=True,
|
|
)
|
|
|
|
with self.assertRaises(ValueError):
|
|
_ = processor(
|
|
text=input_str,
|
|
images=image_input,
|
|
return_tensors="pt",
|
|
truncation=True,
|
|
padding=True,
|
|
max_length=20,
|
|
)
|
|
|
|
@staticmethod
|
|
def prepare_processor_dict():
|
|
return {"image_seq_length": 2} # fmt: skip
|