transformers/utils/check_config_attributes.py
Matthijs Hollemans 4ece3b9433
add VITS model (#24085)
* add VITS model

* let's vits

* finish TextEncoder (mostly)

* rename VITS to Vits

* add StochasticDurationPredictor

* ads flow model

* add generator

* correctly set vocab size

* add tokenizer

* remove processor & feature extractor

* add PosteriorEncoder

* add missing weights to SDP

* also convert LJSpeech and VCTK checkpoints

* add training stuff in forward

* add placeholder tests for tokenizer

* add placeholder tests for model

* starting cleanup

* let the great renaming begin!

* use config

* global_conditioning

* more cleaning

* renaming variables

* more renaming

* more renaming

* it never ends

* reticulating the splines

* more renaming

* HiFi-GAN

* doc strings for main model

* fixup

* fix-copies

* don't make it a PreTrainedModel

* fixup

* rename config options

* remove training logic from forward pass

* simplify relative position

* use actual checkpoint

* style

* PR review fixes

* more review changes

* fixup

* more unit tests

* fixup

* fix doc test

* add integration test

* improve tokenizer tests

* add tokenizer integration test

* fix tests on GPU (gave OOM)

* conversion script can handle repos from hub

* add conversion script for all MMS-TTS checkpoints

* automatically create a README for the converted checkpoint

* small changes to config

* push README to hub

* only show uroman note for checkpoints that need it

* remove conversion script because code formatting breaks the readme

* make WaveNet layers configurable

* rename variables

* simplifying the math

* output attentions and hidden states

* remove VitsFlip in flow model

* also got rid of the other flip

* fix tests

* rename more variables

* rename tokenizer, add phonemization

* raise error when phonemizer missing

* re-order config docstrings to match method

* change config naming

* remove redundant str -> list

* fix copyright: vits authors -> kakao enterprise

* (mean, log_variances) -> (prior_mean, prior_log_variances)

* if return dict -> if not return dict

* speed -> speaking rate

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* update fused tanh sigmoid

* reduce dims in tester

* audio -> output_values

* audio -> output_values in tuple out

* fix return type

* fix return type

* make _unconstrained_rational_quadratic_spline a function

* all nn's to accept a config

* add spectro to output

* move {speaking rate, noise scale, noise scale duration} to config

* path -> attn_path

* idxs -> valid idxs -> padded idxs

* output values -> waveform

* use config for attention

* make generation work

* harden integration test

* add spectrogram to dict output

* tokenizer refactor

* make style

* remove 'fake' padding token

* harden tokenizer tests

* ron norm test

* fprop / save tests deterministic

* move uroman to tokenizer as much as possible

* better logger message

* fix vivit imports

* add uroman integration test

* make style

* up

* matthijs -> sanchit-gandhi

* fix tokenizer test

* make fix-copies

* fix dict comprehension

* fix config tests

* fix model tests

* make outputs consistent with reverse/not reverse

* fix key concat

* more model details

* add author

* return dict

* speaker error

* labels error

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vits/convert_original_checkpoint.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* remove uromanize

* add docstrings

* add docstrings for tokenizer

* upper-case skip messages

* fix return dict

* style

* finish tests

* update checkpoints

* make style

* remove doctest file

* revert

* fix docstring

* fix tokenizer

* remove uroman integration test

* add sampling rate

* fix docs / docstrings

* style

* add sr to model output

* fix outputs

* style / copies

* fix docstring

* fix copies

* remove sr from model outputs

* Update utils/documentation_tests.txt

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add sr as allowed attr

---------

Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-09-01 10:50:06 +01:00

300 lines
13 KiB
Python

# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import os
import re
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
PATH_TO_TRANSFORMERS = "src/transformers"
# This is to make sure the transformers module imported is the one in the repo.
transformers = direct_transformers_import(PATH_TO_TRANSFORMERS)
CONFIG_MAPPING = transformers.models.auto.configuration_auto.CONFIG_MAPPING
SPECIAL_CASES_TO_ALLOW = {
# used to compute the property `self.chunk_length`
"EncodecConfig": ["overlap"],
# used as `self.bert_model = BertModel(config, ...)`
"DPRConfig": True,
# not used in modeling files, but it's an important information
"FSMTConfig": ["langs"],
# used internally in the configuration class file
"GPTNeoConfig": ["attention_types"],
# used internally in the configuration class file
"EsmConfig": ["is_folding_model"],
# used during training (despite we don't have training script for these models yet)
"Mask2FormerConfig": ["ignore_value"],
# `ignore_value` used during training (despite we don't have training script for these models yet)
# `norm` used in conversion script (despite not using in the modeling file)
"OneFormerConfig": ["ignore_value", "norm"],
# used during preprocessing and collation, see `collating_graphormer.py`
"GraphormerConfig": ["spatial_pos_max"],
# used internally in the configuration class file
"T5Config": ["feed_forward_proj"],
# used internally in the configuration class file
# `tokenizer_class` get default value `T5Tokenizer` intentionally
"MT5Config": ["feed_forward_proj", "tokenizer_class"],
"UMT5Config": ["feed_forward_proj", "tokenizer_class"],
# used internally in the configuration class file
"LongT5Config": ["feed_forward_proj"],
# used internally in the configuration class file
"Pop2PianoConfig": ["feed_forward_proj"],
# used internally in the configuration class file
"SwitchTransformersConfig": ["feed_forward_proj"],
# having default values other than `1e-5` - we can't fix them without breaking
"BioGptConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"GLPNConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"SegformerConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"CvtConfig": ["layer_norm_eps"],
# having default values other than `1e-5` - we can't fix them without breaking
"PerceiverConfig": ["layer_norm_eps"],
# used internally to calculate the feature size
"InformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate the feature size
"TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate the feature size
"AutoformerConfig": ["num_static_real_features", "num_time_features"],
# used internally to calculate `mlp_dim`
"SamVisionConfig": ["mlp_ratio"],
# For (head) training, but so far not implemented
"ClapAudioConfig": ["num_classes"],
# Not used, but providing useful information to users
"SpeechT5HifiGanConfig": ["sampling_rate"],
}
# TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure
SPECIAL_CASES_TO_ALLOW.update(
{
"CLIPSegConfig": True,
"DeformableDetrConfig": True,
"DetaConfig": True,
"DinatConfig": True,
"DonutSwinConfig": True,
"EfficientFormerConfig": True,
"FSMTConfig": True,
"JukeboxConfig": True,
"LayoutLMv2Config": True,
"MaskFormerSwinConfig": True,
"MT5Config": True,
# For backward compatibility with trust remote code models
"MptConfig": True,
"MptAttentionConfig": True,
"NatConfig": True,
"OneFormerConfig": True,
"PerceiverConfig": True,
"RagConfig": True,
"SpeechT5Config": True,
"SwinConfig": True,
"Swin2SRConfig": True,
"Swinv2Config": True,
"SwitchTransformersConfig": True,
"TableTransformerConfig": True,
"TapasConfig": True,
"TransfoXLConfig": True,
"UniSpeechConfig": True,
"UniSpeechSatConfig": True,
"WavLMConfig": True,
"WhisperConfig": True,
# TODO: @Arthur (for `alignment_head` and `alignment_layer`)
"JukeboxPriorConfig": True,
# TODO: @Younes (for `is_decoder`)
"Pix2StructTextConfig": True,
"IdeficsConfig": True,
"IdeficsVisionConfig": True,
"IdeficsPerceiverConfig": True,
}
)
def check_attribute_being_used(config_class, attributes, default_value, source_strings):
"""Check if any name in `attributes` is used in one of the strings in `source_strings`
Args:
config_class (`type`):
The configuration class for which the arguments in its `__init__` will be checked.
attributes (`List[str]`):
The name of an argument (or attribute) and its variant names if any.
default_value (`Any`):
A default value for the attribute in `attributes` assigned in the `__init__` of `config_class`.
source_strings (`List[str]`):
The python source code strings in the same modeling directory where `config_class` is defined. The file
containing the definition of `config_class` should be excluded.
"""
attribute_used = False
for attribute in attributes:
for modeling_source in source_strings:
# check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)`
if (
f"config.{attribute}" in modeling_source
or f'getattr(config, "{attribute}"' in modeling_source
or f'getattr(self.config, "{attribute}"' in modeling_source
):
attribute_used = True
# Deal with multi-line cases
elif (
re.search(
rf'getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"',
modeling_source,
)
is not None
):
attribute_used = True
# `SequenceSummary` is called with `SequenceSummary(config)`
elif attribute in [
"summary_type",
"summary_use_proj",
"summary_activation",
"summary_last_dropout",
"summary_proj_to_labels",
"summary_first_dropout",
]:
if "SequenceSummary" in modeling_source:
attribute_used = True
if attribute_used:
break
if attribute_used:
break
# common and important attributes, even if they do not always appear in the modeling files
attributes_to_allow = [
"bos_index",
"eos_index",
"pad_index",
"unk_index",
"mask_index",
"image_size",
"use_cache",
"out_features",
"out_indices",
"sampling_rate",
]
attributes_used_in_generation = ["encoder_no_repeat_ngram_size"]
# Special cases to be allowed
case_allowed = True
if not attribute_used:
case_allowed = False
for attribute in attributes:
# Allow if the default value in the configuration class is different from the one in `PretrainedConfig`
if attribute in ["is_encoder_decoder"] and default_value is True:
case_allowed = True
elif attribute in ["tie_word_embeddings"] and default_value is False:
case_allowed = True
# Allow cases without checking the default value in the configuration class
elif attribute in attributes_to_allow + attributes_used_in_generation:
case_allowed = True
elif attribute.endswith("_token_id"):
case_allowed = True
# configuration class specific cases
if not case_allowed:
allowed_cases = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__, [])
case_allowed = allowed_cases is True or attribute in allowed_cases
return attribute_used or case_allowed
def check_config_attributes_being_used(config_class):
"""Check the arguments in `__init__` of `config_class` are used in the modeling files in the same directory
Args:
config_class (`type`):
The configuration class for which the arguments in its `__init__` will be checked.
"""
# Get the parameters in `__init__` of the configuration class, and the default values if any
signature = dict(inspect.signature(config_class.__init__).parameters)
parameter_names = [x for x in list(signature.keys()) if x not in ["self", "kwargs"]]
parameter_defaults = [signature[param].default for param in parameter_names]
# If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long
# as one variant is used, the test should pass
reversed_attribute_map = {}
if len(config_class.attribute_map) > 0:
reversed_attribute_map = {v: k for k, v in config_class.attribute_map.items()}
# Get the path to modeling source files
config_source_file = inspect.getsourcefile(config_class)
model_dir = os.path.dirname(config_source_file)
# Let's check against all frameworks: as long as one framework uses an attribute, we are good.
modeling_paths = [os.path.join(model_dir, fn) for fn in os.listdir(model_dir) if fn.startswith("modeling_")]
# Get the source code strings
modeling_sources = []
for path in modeling_paths:
if os.path.isfile(path):
with open(path, encoding="utf8") as fp:
modeling_sources.append(fp.read())
unused_attributes = []
for config_param, default_value in zip(parameter_names, parameter_defaults):
# `attributes` here is all the variant names for `config_param`
attributes = [config_param]
# some configuration classes have non-empty `attribute_map`, and both names could be used in the
# corresponding modeling files. As long as one of them appears, it is fine.
if config_param in reversed_attribute_map:
attributes.append(reversed_attribute_map[config_param])
if not check_attribute_being_used(config_class, attributes, default_value, modeling_sources):
unused_attributes.append(attributes[0])
return sorted(unused_attributes)
def check_config_attributes():
"""Check the arguments in `__init__` of all configuration classes are used in python files"""
configs_with_unused_attributes = {}
for _config_class in list(CONFIG_MAPPING.values()):
# Skip deprecated models
if "models.deprecated" in _config_class.__module__:
continue
# Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.)
config_classes_in_module = [
cls
for name, cls in inspect.getmembers(
inspect.getmodule(_config_class),
lambda x: inspect.isclass(x)
and issubclass(x, PretrainedConfig)
and inspect.getmodule(x) == inspect.getmodule(_config_class),
)
]
for config_class in config_classes_in_module:
unused_attributes = check_config_attributes_being_used(config_class)
if len(unused_attributes) > 0:
configs_with_unused_attributes[config_class.__name__] = unused_attributes
if len(configs_with_unused_attributes) > 0:
error = "The following configuration classes contain unused attributes in the corresponding modeling files:\n"
for name, attributes in configs_with_unused_attributes.items():
error += f"{name}: {attributes}\n"
raise ValueError(error)
if __name__ == "__main__":
check_config_attributes()