mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-05 22:00:09 +06:00

* add working idefics2 fast and improvements for fast nested images processing * add fast image processors idefics 3 and smolvlm * cleanup tests * fic doc idefics2 * PR review and fix issues after merge * Force providing disable_grouping to group_images_by_shape * simplify group_images_by_shape * fix modular * Fix nits after review
361 lines
16 KiB
Python
361 lines
16 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import requests
|
|
|
|
from transformers.image_utils import PILImageResampling
|
|
from transformers.testing_utils import require_torch, require_vision
|
|
from transformers.utils import is_torch_available, is_torchvision_available, is_vision_available
|
|
|
|
from ...test_image_processing_common import ImageProcessingTestMixin
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import Idefics3ImageProcessor
|
|
|
|
if is_torchvision_available():
|
|
from transformers import Idefics3ImageProcessorFast
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
|
|
class Idefics3ImageProcessingTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=7,
|
|
num_channels=3,
|
|
num_images=1,
|
|
image_size=18,
|
|
min_resolution=30,
|
|
max_resolution=40,
|
|
do_resize=True,
|
|
size=None,
|
|
max_image_size=None,
|
|
do_rescale=True,
|
|
rescale_factor=1 / 255,
|
|
do_normalize=True,
|
|
image_mean=[0.5, 0.5, 0.5],
|
|
image_std=[0.5, 0.5, 0.5],
|
|
do_convert_rgb=True,
|
|
do_pad=True,
|
|
do_image_splitting=True,
|
|
resample=PILImageResampling.LANCZOS,
|
|
):
|
|
self.size = size if size is not None else {"longest_edge": max_resolution}
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.num_channels = num_channels
|
|
self.num_images = num_images
|
|
self.image_size = image_size
|
|
self.min_resolution = min_resolution
|
|
self.max_resolution = max_resolution
|
|
self.do_resize = do_resize
|
|
self.resample = resample
|
|
self.do_image_splitting = do_image_splitting
|
|
self.max_image_size = max_image_size if max_image_size is not None else {"longest_edge": 20}
|
|
self.do_rescale = do_rescale
|
|
self.rescale_factor = rescale_factor
|
|
self.do_normalize = do_normalize
|
|
self.image_mean = image_mean
|
|
self.image_std = image_std
|
|
self.do_convert_rgb = do_convert_rgb
|
|
self.do_pad = do_pad
|
|
|
|
def prepare_image_processor_dict(self):
|
|
return {
|
|
"do_convert_rgb": self.do_convert_rgb,
|
|
"do_resize": self.do_resize,
|
|
"size": self.size,
|
|
"max_image_size": self.max_image_size,
|
|
"do_rescale": self.do_rescale,
|
|
"rescale_factor": self.rescale_factor,
|
|
"do_normalize": self.do_normalize,
|
|
"image_mean": self.image_mean,
|
|
"image_std": self.image_std,
|
|
"do_pad": self.do_pad,
|
|
"do_image_splitting": self.do_image_splitting,
|
|
}
|
|
|
|
def get_expected_values(self, image_inputs, batched=False):
|
|
"""
|
|
This function computes the expected height and width when providing images to Idefics3ImageProcessor,
|
|
assuming do_resize is set to True. The expected size in that case the max image size.
|
|
"""
|
|
return self.max_image_size["longest_edge"], self.max_image_size["longest_edge"]
|
|
|
|
def expected_output_image_shape(self, images):
|
|
height, width = self.get_expected_values(images, batched=True)
|
|
effective_nb_images = (
|
|
self.num_images * 5 if self.do_image_splitting else 1
|
|
) # 5 is a squared image divided into 4 + global image resized
|
|
return effective_nb_images, self.num_channels, height, width
|
|
|
|
def prepare_image_inputs(
|
|
self,
|
|
batch_size=None,
|
|
min_resolution=None,
|
|
max_resolution=None,
|
|
num_channels=None,
|
|
num_images=None,
|
|
size_divisor=None,
|
|
equal_resolution=False,
|
|
numpify=False,
|
|
torchify=False,
|
|
):
|
|
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
|
|
or a list of PyTorch tensors if one specifies torchify=True.
|
|
|
|
One can specify whether the images are of the same resolution or not.
|
|
"""
|
|
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
|
|
|
|
batch_size = batch_size if batch_size is not None else self.batch_size
|
|
min_resolution = min_resolution if min_resolution is not None else self.min_resolution
|
|
max_resolution = max_resolution if max_resolution is not None else self.max_resolution
|
|
num_channels = num_channels if num_channels is not None else self.num_channels
|
|
num_images = num_images if num_images is not None else self.num_images
|
|
|
|
images_list = []
|
|
for i in range(batch_size):
|
|
images = []
|
|
for j in range(num_images):
|
|
if equal_resolution:
|
|
width = height = max_resolution
|
|
else:
|
|
# To avoid getting image width/height 0
|
|
if size_divisor is not None:
|
|
# If `size_divisor` is defined, the image needs to have width/size >= `size_divisor`
|
|
min_resolution = max(size_divisor, min_resolution)
|
|
width, height = np.random.choice(np.arange(min_resolution, max_resolution), 2)
|
|
images.append(np.random.randint(255, size=(num_channels, width, height), dtype=np.uint8))
|
|
images_list.append(images)
|
|
|
|
if not numpify and not torchify:
|
|
# PIL expects the channel dimension as last dimension
|
|
images_list = [[Image.fromarray(np.moveaxis(image, 0, -1)) for image in images] for images in images_list]
|
|
|
|
if torchify:
|
|
images_list = [[torch.from_numpy(image) for image in images] for images in images_list]
|
|
|
|
if numpify:
|
|
# Numpy images are typically in channels last format
|
|
images_list = [[image.transpose(1, 2, 0) for image in images] for images in images_list]
|
|
|
|
return images_list
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class Idefics3ImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
|
image_processing_class = Idefics3ImageProcessor if is_vision_available() else None
|
|
fast_image_processing_class = Idefics3ImageProcessorFast if is_torchvision_available() else None
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
self.image_processor_tester = Idefics3ImageProcessingTester(self)
|
|
|
|
@property
|
|
def image_processor_dict(self):
|
|
return self.image_processor_tester.prepare_image_processor_dict()
|
|
|
|
def test_image_processor_properties(self):
|
|
for image_processing_class in self.image_processor_list:
|
|
image_processing = image_processing_class(**self.image_processor_dict)
|
|
self.assertTrue(hasattr(image_processing, "do_convert_rgb"))
|
|
self.assertTrue(hasattr(image_processing, "do_resize"))
|
|
self.assertTrue(hasattr(image_processing, "size"))
|
|
self.assertTrue(hasattr(image_processing, "resample"))
|
|
self.assertTrue(hasattr(image_processing, "do_image_splitting"))
|
|
self.assertTrue(hasattr(image_processing, "max_image_size"))
|
|
self.assertTrue(hasattr(image_processing, "do_rescale"))
|
|
self.assertTrue(hasattr(image_processing, "rescale_factor"))
|
|
self.assertTrue(hasattr(image_processing, "do_normalize"))
|
|
self.assertTrue(hasattr(image_processing, "image_mean"))
|
|
self.assertTrue(hasattr(image_processing, "image_std"))
|
|
self.assertTrue(hasattr(image_processing, "do_pad"))
|
|
self.assertTrue(hasattr(image_processing, "do_image_splitting"))
|
|
|
|
def test_call_numpy(self):
|
|
for image_processing_class in self.image_processor_list:
|
|
# Initialize image_processing
|
|
image_processing = image_processing_class(**self.image_processor_dict)
|
|
# create random numpy tensors
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
|
|
for sample_images in image_inputs:
|
|
for image in sample_images:
|
|
self.assertIsInstance(image, np.ndarray)
|
|
|
|
# Test not batched input
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
|
|
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
|
|
|
|
# Test batched
|
|
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
|
|
self.assertEqual(
|
|
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
|
|
)
|
|
|
|
def test_call_numpy_4_channels(self):
|
|
# Idefics3 always processes images as RGB, so it always returns images with 3 channels
|
|
for image_processing_class in self.image_processor_list:
|
|
# Initialize image_processing
|
|
image_processor_dict = self.image_processor_dict
|
|
image_processing = image_processing_class(**image_processor_dict)
|
|
# create random numpy tensors
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
|
|
|
|
for sample_images in image_inputs:
|
|
for image in sample_images:
|
|
self.assertIsInstance(image, np.ndarray)
|
|
|
|
# Test not batched input
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
|
|
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
|
|
|
|
# Test batched
|
|
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
|
|
self.assertEqual(
|
|
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
|
|
)
|
|
|
|
def test_call_pil(self):
|
|
for image_processing_class in self.image_processor_list:
|
|
# Initialize image_processing
|
|
image_processing = image_processing_class(**self.image_processor_dict)
|
|
# create random PIL images
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
|
|
for images in image_inputs:
|
|
for image in images:
|
|
self.assertIsInstance(image, Image.Image)
|
|
|
|
# Test not batched input
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
|
|
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
|
|
|
|
# Test batched
|
|
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
|
|
self.assertEqual(
|
|
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
|
|
)
|
|
|
|
def test_call_pytorch(self):
|
|
for image_processing_class in self.image_processor_list:
|
|
# Initialize image_processing
|
|
image_processing = image_processing_class(**self.image_processor_dict)
|
|
# create random PyTorch tensors
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
|
|
|
|
for images in image_inputs:
|
|
for image in images:
|
|
self.assertIsInstance(image, torch.Tensor)
|
|
|
|
# Test not batched input
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
|
|
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
|
|
|
|
# Test batched
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
|
|
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
|
self.assertEqual(
|
|
tuple(encoded_images.shape),
|
|
(self.image_processor_tester.batch_size, *expected_output_image_shape),
|
|
)
|
|
|
|
@require_vision
|
|
@require_torch
|
|
def test_slow_fast_equivalence(self):
|
|
if not self.test_slow_image_processor or not self.test_fast_image_processor:
|
|
self.skipTest(reason="Skipping slow/fast equivalence test")
|
|
|
|
if self.image_processing_class is None or self.fast_image_processing_class is None:
|
|
self.skipTest(reason="Skipping slow/fast equivalence test as one of the image processors is not defined")
|
|
|
|
dummy_image = Image.open(
|
|
requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw
|
|
)
|
|
dummy_image = dummy_image.resize((100, 150))
|
|
image_processor_slow = self.image_processing_class(
|
|
**self.image_processor_dict, resample=PILImageResampling.BICUBIC
|
|
)
|
|
image_processor_fast = self.fast_image_processing_class(
|
|
**self.image_processor_dict, resample=PILImageResampling.BICUBIC
|
|
)
|
|
|
|
encoding_slow = image_processor_slow(dummy_image, return_tensors="pt", return_row_col_info=True)
|
|
encoding_fast = image_processor_fast(dummy_image, return_tensors="pt", return_row_col_info=True)
|
|
|
|
self._assert_slow_fast_tensors_equivalence(encoding_slow.pixel_values, encoding_fast.pixel_values)
|
|
self._assert_slow_fast_tensors_equivalence(
|
|
encoding_slow.pixel_attention_mask.float(), encoding_fast.pixel_attention_mask.float()
|
|
)
|
|
self.assertEqual(encoding_slow.rows, encoding_fast.rows)
|
|
self.assertEqual(encoding_slow.cols, encoding_fast.cols)
|
|
|
|
@require_vision
|
|
@require_torch
|
|
def test_slow_fast_equivalence_batched(self):
|
|
if not self.test_slow_image_processor or not self.test_fast_image_processor:
|
|
self.skipTest(reason="Skipping slow/fast equivalence test")
|
|
|
|
if self.image_processing_class is None or self.fast_image_processing_class is None:
|
|
self.skipTest(reason="Skipping slow/fast equivalence test as one of the image processors is not defined")
|
|
|
|
if hasattr(self.image_processor_tester, "do_center_crop") and self.image_processor_tester.do_center_crop:
|
|
self.skipTest(
|
|
reason="Skipping as do_center_crop is True and center_crop functions are not equivalent for fast and slow processors"
|
|
)
|
|
|
|
dummy_images = self.image_processor_tester.prepare_image_inputs(
|
|
equal_resolution=False, num_images=5, torchify=True
|
|
)
|
|
# pop some images to have non homogenous batches:
|
|
indices_to_pop = [i if np.random.random() < 0.5 else None for i in range(len(dummy_images))]
|
|
for i in indices_to_pop:
|
|
if i is not None:
|
|
dummy_images[i].pop()
|
|
|
|
image_processor_slow = self.image_processing_class(
|
|
**self.image_processor_dict, resample=PILImageResampling.BICUBIC
|
|
)
|
|
image_processor_fast = self.fast_image_processing_class(
|
|
**self.image_processor_dict, resample=PILImageResampling.BICUBIC
|
|
)
|
|
|
|
encoding_slow = image_processor_slow(dummy_images, return_tensors="pt", return_row_col_info=True)
|
|
encoding_fast = image_processor_fast(dummy_images, return_tensors="pt", return_row_col_info=True)
|
|
|
|
self._assert_slow_fast_tensors_equivalence(encoding_slow.pixel_values, encoding_fast.pixel_values, atol=3e-1)
|
|
self._assert_slow_fast_tensors_equivalence(
|
|
encoding_slow.pixel_attention_mask.float(), encoding_fast.pixel_attention_mask.float()
|
|
)
|
|
self.assertEqual(encoding_slow.rows, encoding_fast.rows)
|
|
self.assertEqual(encoding_slow.cols, encoding_fast.cols)
|