transformers/tests/models/idefics2/test_image_processing_idefics2.py
Yoni Gozlan d29482cc91
Add Idefics2/3 and SmolVLM Fast image processors + improvements for fast image processors (#38157)
* add working idefics2 fast and improvements for fast nested images processing

* add fast image processors idefics 3 and smolvlm

* cleanup tests

* fic doc idefics2

* PR review and fix issues after merge

* Force providing disable_grouping to group_images_by_shape

* simplify group_images_by_shape

* fix modular

* Fix nits after review
2025-06-23 14:17:25 +00:00

403 lines
18 KiB
Python

# coding=utf-8
# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_torchvision_available, is_vision_available
from ...test_image_processing_common import ImageProcessingTestMixin
if is_vision_available():
from PIL import Image
from transformers import Idefics2ImageProcessor
if is_torchvision_available():
from transformers import Idefics2ImageProcessorFast
if is_torch_available():
import torch
class Idefics2ImageProcessingTester:
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
num_images=1,
image_size=18,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=None,
do_rescale=True,
rescale_factor=1 / 255,
do_normalize=True,
image_mean=[0.5, 0.5, 0.5],
image_std=[0.5, 0.5, 0.5],
do_convert_rgb=True,
do_pad=True,
do_image_splitting=True,
):
size = size if size is not None else {"shortest_edge": 378, "longest_edge": 980}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.num_images = num_images
self.image_size = image_size
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_convert_rgb = do_convert_rgb
self.do_pad = do_pad
self.do_image_splitting = do_image_splitting
def prepare_image_processor_dict(self):
return {
"do_convert_rgb": self.do_convert_rgb,
"do_resize": self.do_resize,
"size": self.size,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_pad": self.do_pad,
"do_image_splitting": self.do_image_splitting,
}
def get_expected_values(self, image_inputs, batched=False):
if not batched:
shortest_edge = self.size["shortest_edge"]
longest_edge = self.size["longest_edge"]
image = image_inputs[0]
if isinstance(image, Image.Image):
w, h = image.size
elif isinstance(image, np.ndarray):
h, w = image.shape[0], image.shape[1]
else:
h, w = image.shape[1], image.shape[2]
aspect_ratio = w / h
if w > h and w >= longest_edge:
w = longest_edge
h = int(w / aspect_ratio)
elif h > w and h >= longest_edge:
h = longest_edge
w = int(h * aspect_ratio)
w = max(w, shortest_edge)
h = max(h, shortest_edge)
expected_height = h
expected_width = w
else:
expected_values = []
for images in image_inputs:
for image in images:
expected_height, expected_width = self.get_expected_values([image])
expected_values.append((expected_height, expected_width))
expected_height = max(expected_values, key=lambda item: item[0])[0]
expected_width = max(expected_values, key=lambda item: item[1])[1]
return expected_height, expected_width
def expected_output_image_shape(self, images):
height, width = self.get_expected_values(images, batched=True)
effective_nb_images = self.num_images * 5 if self.do_image_splitting else 1
return effective_nb_images, self.num_channels, height, width
def prepare_image_inputs(
self,
batch_size=None,
min_resolution=None,
max_resolution=None,
num_channels=None,
num_images=None,
size_divisor=None,
equal_resolution=False,
numpify=False,
torchify=False,
):
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
batch_size = batch_size if batch_size is not None else self.batch_size
min_resolution = min_resolution if min_resolution is not None else self.min_resolution
max_resolution = max_resolution if max_resolution is not None else self.max_resolution
num_channels = num_channels if num_channels is not None else self.num_channels
num_images = num_images if num_images is not None else self.num_images
images_list = []
for i in range(batch_size):
images = []
for j in range(num_images):
if equal_resolution:
width = height = max_resolution
else:
if size_divisor is not None:
min_resolution = max(size_divisor, min_resolution)
width, height = np.random.choice(np.arange(min_resolution, max_resolution), 2)
images.append(np.random.randint(255, size=(num_channels, width, height), dtype=np.uint8))
images_list.append(images)
if not numpify and not torchify:
images_list = [[Image.fromarray(np.moveaxis(image, 0, -1)) for image in images] for images in images_list]
if torchify:
images_list = [[torch.from_numpy(image) for image in images] for images in images_list]
if numpify:
images_list = [[image.transpose(1, 2, 0) for image in images] for images in images_list]
return images_list
@require_torch
@require_vision
class Idefics2ImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = Idefics2ImageProcessor if is_vision_available() else None
fast_image_processing_class = Idefics2ImageProcessorFast if is_torchvision_available() else None
def setUp(self):
super().setUp()
self.image_processor_tester = Idefics2ImageProcessingTester(self)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
for image_processing_class in self.image_processor_list:
image_processing = image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "do_convert_rgb"))
self.assertTrue(hasattr(image_processing, "do_resize"))
self.assertTrue(hasattr(image_processing, "size"))
self.assertTrue(hasattr(image_processing, "do_rescale"))
self.assertTrue(hasattr(image_processing, "rescale_factor"))
self.assertTrue(hasattr(image_processing, "do_normalize"))
self.assertTrue(hasattr(image_processing, "image_mean"))
self.assertTrue(hasattr(image_processing, "image_std"))
self.assertTrue(hasattr(image_processing, "do_pad"))
self.assertTrue(hasattr(image_processing, "do_image_splitting"))
def test_call_numpy(self):
for image_processing_class in self.image_processor_list:
# Initialize image_processing
image_processing = image_processing_class(**self.image_processor_dict)
# create random numpy tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
for sample_images in image_inputs:
for image in sample_images:
self.assertIsInstance(image, np.ndarray)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
# Test batched
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
self.assertEqual(
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
)
def test_call_numpy_4_channels(self):
for image_processing_class in self.image_processor_list:
# Initialize image_processing
image_processor_dict = self.image_processor_dict
image_processor_dict["image_mean"] = [0.5, 0.5, 0.5, 0.5]
image_processor_dict["image_std"] = [0.5, 0.5, 0.5, 0.5]
image_processing = image_processing_class(**image_processor_dict)
# create random numpy tensors
self.image_processor_tester.num_channels = 4
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
for sample_images in image_inputs:
for image in sample_images:
self.assertIsInstance(image, np.ndarray)
# Test not batched input
encoded_images = image_processing(
image_inputs[0], input_data_format="channels_last", return_tensors="pt"
).pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
# Test batched
encoded_images = image_processing(
image_inputs, input_data_format="channels_last", return_tensors="pt"
).pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
self.assertEqual(
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
)
def test_call_pil(self):
for image_processing_class in self.image_processor_list:
# Initialize image_processing
image_processing = image_processing_class(**self.image_processor_dict)
# create random PIL images
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
for images in image_inputs:
for image in images:
self.assertIsInstance(image, Image.Image)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
# Test batched
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
self.assertEqual(
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
)
def test_call_pytorch(self):
for image_processing_class in self.image_processor_list:
# Initialize image_processing
image_processing = image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
for images in image_inputs:
for image in images:
self.assertIsInstance(image, torch.Tensor)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
# Test batched
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
self.assertEqual(
tuple(encoded_images.shape),
(self.image_processor_tester.batch_size, *expected_output_image_shape),
)
def test_image_splitting(self):
for image_processing_class in self.image_processor_list:
image_processor_dict = self.image_processor_dict.copy()
image_processor_dict["do_image_splitting"] = True
image_processing = image_processing_class(**image_processor_dict)
image_inputs = self.image_processor_tester.prepare_image_inputs(
equal_resolution=True, torchify=True, num_images=1
)
result = image_processing(image_inputs[0], return_tensors="pt")
self.assertEqual(result.pixel_values.shape[1], 5)
image_processor_dict["do_image_splitting"] = False
image_processing = image_processing_class(**image_processor_dict)
result = image_processing(image_inputs[0], return_tensors="pt")
if len(result.pixel_values.shape) == 5:
self.assertEqual(result.pixel_values.shape[1], 1)
else:
self.assertEqual(result.pixel_values.shape[1], self.image_processor_tester.num_channels)
def test_pixel_attention_mask(self):
for image_processing_class in self.image_processor_list:
image_processor_dict = self.image_processor_dict.copy()
image_processor_dict["do_pad"] = True
image_processing = image_processing_class(**image_processor_dict)
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
result = image_processing(image_inputs, return_tensors="pt")
self.assertIn("pixel_attention_mask", result)
self.assertEqual(result.pixel_attention_mask.shape[-2:], result.pixel_values.shape[-2:])
image_processor_dict["do_pad"] = False
image_processor_dict["do_image_splitting"] = False
image_processing = image_processing_class(**image_processor_dict)
equal_size_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True, torchify=True)
result = image_processing(equal_size_inputs, return_tensors="pt")
self.assertNotIn("pixel_attention_mask", result)
def test_convert_rgb(self):
for image_processing_class in self.image_processor_list:
rgba_image = Image.new("RGBA", (100, 100), (255, 0, 0, 128))
# Test with do_convert_rgb=True - this should work for all processors
image_processor_dict = self.image_processor_dict.copy()
image_processor_dict["do_convert_rgb"] = True
image_processing = image_processing_class(**image_processor_dict)
result = image_processing([rgba_image], return_tensors="pt")
self.assertIsNotNone(result.pixel_values)
rgb_image = rgba_image.convert("RGB")
image_processor_dict["do_convert_rgb"] = False
image_processing = image_processing_class(**image_processor_dict)
# Use the RGB image instead of RGBA when do_convert_rgb=False
result = image_processing([rgb_image], return_tensors="pt")
self.assertIsNotNone(result.pixel_values)
# Additional test: verifying proper handling of regular RGB images
rgb_image = Image.new("RGB", (100, 100), (255, 0, 0))
result = image_processing([rgb_image], return_tensors="pt")
self.assertIsNotNone(result.pixel_values)
def test_slow_fast_equivalence_batched(self):
if not self.test_slow_image_processor or not self.test_fast_image_processor:
self.skipTest(reason="Skipping slow/fast equivalence test")
if self.image_processing_class is None or self.fast_image_processing_class is None:
self.skipTest(reason="Skipping slow/fast equivalence test as one of the image processors is not defined")
if hasattr(self.image_processor_tester, "do_center_crop") and self.image_processor_tester.do_center_crop:
self.skipTest(
reason="Skipping as do_center_crop is True and center_crop functions are not equivalent for fast and slow processors"
)
dummy_images = self.image_processor_tester.prepare_image_inputs(
equal_resolution=False, num_images=5, torchify=True
)
# pop some images to have non homogenous batches:
indices_to_pop = [i if np.random.random() < 0.5 else None for i in range(len(dummy_images))]
for i in indices_to_pop:
if i is not None:
dummy_images[i].pop()
image_processor_slow = self.image_processing_class(**self.image_processor_dict)
image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict)
encoding_slow = image_processor_slow(dummy_images, return_tensors="pt")
encoding_fast = image_processor_fast(dummy_images, return_tensors="pt")
self._assert_slow_fast_tensors_equivalence(encoding_slow.pixel_values, encoding_fast.pixel_values)
self._assert_slow_fast_tensors_equivalence(
encoding_slow.pixel_attention_mask.float(), encoding_fast.pixel_attention_mask.float()
)