mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-05 13:50:13 +06:00

* s2t * fix config * conversion script * fix import * add tokenizer * fix tok init * fix tokenizer * first version working * fix embeds * fix lm head * remove extra heads * fix convert script * handle encoder attn mask * style * better enc attn mask * override _prepare_attention_mask_for_generation * handle attn_maks in encoder and decoder * input_ids => input_features * enable use_cache * remove old code * expand embeddings if needed * remove logits bias * masked_lm_loss => loss * hack tokenizer to support feature processing * fix model_input_names * style * fix error message * doc * remove inputs_embeds * remove input_embeds * remove unnecessary docstring * quality * SpeechToText => Speech2Text * style * remove shared_embeds * subsample => conv * remove Speech2TextTransformerDecoderWrapper * update output_lengths formula * fix table * remove max_position_embeddings * update conversion scripts * add possibility to do upper case for now * add FeatureExtractor and Processor * add tests for extractor * require_torch_audio => require_torchaudio * add processor test * update import * remove classification head * attention mask is now 1D * update docstrings * attention mask should be of type long * handle attention mask from generate * alwyas return attention_mask * fix test * style * doc * Speech2TextTransformer => Speech2Text * Speech2TextTransformerConfig => Speech2TextConfig * remove dummy_inputs * nit * style * multilinguial tok * fix tokenizer * add tgt_lang setter * save lang_codes * fix tokenizer * add forced_bos_token_id to tokenizer * apply review suggestions * add torchaudio to extra deps * add speech deps to CI * fix dep * add libsndfile to ci * libsndfile1 * add speech to extras all * libsndfile1 -> libsndfile1 * libsndfile * libsndfile1-dev * apt update * add sudo to install * update deps table * install libsndfile1-dev on CI * tuple to list * init conv layer * add model tests * quality * add integration tests * skip_special_tokens * add speech_to_text_transformer in toctree * fix tokenizer * fix fp16 tests * add tokenizer tests * fix copyright * input_values => input_features * doc * add model in readme * doc * change checkpoint names * fix copyright * fix code example * add max_model_input_sizes in tokenizer * fix integration tests * add do_lower_case to tokenizer * remove clamp trick * fix "Add modeling imports here" * fix copyrights * fix tests * SpeechToTextTransformer => SpeechToText * fix naming * fix table formatting * fix typo * style * fix typos * remove speech dep from extras[testing] * fix copies * rename doc file, * put imports under is_torch_available * run feat extract tests when torch is available * dummy objects for processor and extractor * fix imports in tests * fix import in modeling test * fxi imports * fix torch import * fix imports again * fix positional embeddings * fix typo in import * adapt new extractor refactor * style * fix torchscript test * doc * doc * Apply suggestions from code review Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> * fix docs, copied from, style * fix docstring * handle imports * remove speech from all extra deps * remove s2t from seq2seq lm mapping * better names * skip training tests * add install instructions * List => Tuple * doc * fix conversion script * fix urls * add instruction for libsndfile * fix fp16 test Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
147 lines
5.8 KiB
Python
147 lines
5.8 KiB
Python
# coding=utf-8
|
|
# Copyright 2021 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import itertools
|
|
import random
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from transformers import Speech2TextFeatureExtractor
|
|
from transformers.testing_utils import require_torch, require_torchaudio
|
|
|
|
from .test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
|
|
|
|
|
|
global_rng = random.Random()
|
|
|
|
|
|
def floats_list(shape, scale=1.0, rng=None, name=None):
|
|
"""Creates a random float32 tensor"""
|
|
if rng is None:
|
|
rng = global_rng
|
|
|
|
values = []
|
|
for batch_idx in range(shape[0]):
|
|
values.append([])
|
|
for _ in range(shape[1]):
|
|
values[-1].append(rng.random() * scale)
|
|
|
|
return values
|
|
|
|
|
|
@require_torch
|
|
@require_torchaudio
|
|
class Speech2TextFeatureExtractionTester(unittest.TestCase):
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=7,
|
|
min_seq_length=400,
|
|
max_seq_length=2000,
|
|
feature_size=24,
|
|
num_mel_bins=24,
|
|
padding_value=0.0,
|
|
sampling_rate=16_000,
|
|
return_attention_mask=True,
|
|
do_normalize=True,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.min_seq_length = min_seq_length
|
|
self.max_seq_length = max_seq_length
|
|
self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
|
|
self.feature_size = feature_size
|
|
self.num_mel_bins = num_mel_bins
|
|
self.padding_value = padding_value
|
|
self.sampling_rate = sampling_rate
|
|
self.return_attention_mask = return_attention_mask
|
|
self.do_normalize = do_normalize
|
|
|
|
def prepare_feat_extract_dict(self):
|
|
return {
|
|
"feature_size": self.feature_size,
|
|
"num_mel_bins": self.num_mel_bins,
|
|
"padding_value": self.padding_value,
|
|
"sampling_rate": self.sampling_rate,
|
|
"return_attention_mask": self.return_attention_mask,
|
|
"do_normalize": self.do_normalize,
|
|
}
|
|
|
|
def prepare_inputs_for_common(self, equal_length=False, numpify=False):
|
|
def _flatten(list_of_lists):
|
|
return list(itertools.chain(*list_of_lists))
|
|
|
|
if equal_length:
|
|
speech_inputs = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)]
|
|
else:
|
|
speech_inputs = [
|
|
floats_list((x, self.feature_size))
|
|
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff)
|
|
]
|
|
if numpify:
|
|
speech_inputs = [np.asarray(x) for x in speech_inputs]
|
|
return speech_inputs
|
|
|
|
|
|
@require_torch
|
|
@require_torchaudio
|
|
class Speech2TextFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase):
|
|
|
|
feature_extraction_class = Speech2TextFeatureExtractor
|
|
|
|
def setUp(self):
|
|
self.feat_extract_tester = Speech2TextFeatureExtractionTester(self)
|
|
|
|
def test_call(self):
|
|
# Tests that all call wrap to encode_plus and batch_encode_plus
|
|
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
|
|
# create three inputs of length 800, 1000, and 1200
|
|
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
|
|
np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]
|
|
|
|
# Test feature size
|
|
input_features = feature_extractor(np_speech_inputs, padding=True, return_tensors="np").input_features
|
|
self.assertTrue(input_features.ndim == 3)
|
|
self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size)
|
|
|
|
# Test not batched input
|
|
encoded_sequences_1 = feature_extractor(speech_inputs[0], return_tensors="np").input_features
|
|
encoded_sequences_2 = feature_extractor(np_speech_inputs[0], return_tensors="np").input_features
|
|
self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3))
|
|
|
|
# Test batched
|
|
encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features
|
|
encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
|
|
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
|
|
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
|
|
|
|
def test_cepstral_mean_and_variance_normalization(self):
|
|
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
|
|
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
|
|
inputs = feature_extractor(speech_inputs, padding=True, return_tensors="np", return_attention_mask=True)
|
|
input_features = inputs.input_features
|
|
attention_mask = inputs.attention_mask
|
|
fbank_feat_lengths = np.sum(attention_mask == 1, axis=1)
|
|
|
|
def _check_zero_mean_unit_variance(input_vector):
|
|
self.assertTrue(np.all(np.mean(input_vector, axis=0) < 1e-3))
|
|
self.assertTrue(np.all(np.abs(np.var(input_vector, axis=0) - 1) < 1e-3))
|
|
|
|
_check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]])
|
|
_check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]])
|
|
_check_zero_mean_unit_variance(input_features[2, : fbank_feat_lengths[2]])
|