transformers/examples/benchmarking/run_benchmark_tf.py
Felipe Curti d266613635
[Benchmarks] Change all args to from no_... to their positive form (#7075)
* Changed name to all no_... arguments and all references to them, inverting the boolean condition

* Change benchmark tests to use new Benchmark Args

* Update src/transformers/benchmark/benchmark_args_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/benchmark/benchmark.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Fix Style. Add --no options in help

* fix some part of tests

* Update src/transformers/benchmark/benchmark_args_utils.py

* Update src/transformers/benchmark/benchmark_args_utils.py

* Update src/transformers/benchmark/benchmark_args_utils.py

* fix all tests

* make style

* add backwards compability

* make backwards compatible

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: fmcurti <fcurti@DESKTOP-RRQURBM.localdomain>
2020-09-23 13:25:24 -04:00

48 lines
1.8 KiB
Python

# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Benchmarking the library on inference and training in TensorFlow"""
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments
def main():
parser = HfArgumentParser(TensorFlowBenchmarkArguments)
benchmark_args = parser.parse_args_into_dataclasses()[0]
benchmark = TensorFlowBenchmark(args=benchmark_args)
try:
benchmark_args = parser.parse_args_into_dataclasses()[0]
except ValueError as e:
arg_error_msg = "Arg --no_{0} is no longer used, please use --no-{0} instead."
begin_error_msg = " ".join(str(e).split(" ")[:-1])
full_error_msg = ""
depreciated_args = eval(str(e).split(" ")[-1])
wrong_args = []
for arg in depreciated_args:
# arg[2:] removes '--'
if arg[2:] in TensorFlowBenchmark.deprecated_args:
# arg[5:] removes '--no_'
full_error_msg += arg_error_msg.format(arg[5:])
else:
wrong_args.append(arg)
if len(wrong_args) > 0:
full_error_msg = full_error_msg + begin_error_msg + str(wrong_args)
raise ValueError(full_error_msg)
benchmark.run()
if __name__ == "__main__":
main()