transformers/tests/models/pixtral/test_modeling_pixtral.py
Raushan Turganbay d23aae2b8c
[VLMs] support attention backends (#37576)
* update models

* why rename

* return attn weights when sdpa

* fixes

* fix attn implementation composite

* fix moshi

* add message

* add typings

* use explicitly all flags for each attn type

* fix some tests

* import what is needed

* kosmos on main has ew attention already, yay

* new models in main, run fixup

* won't fix kosmos yet

* fix-copies

* clean up after rebasing

* fix tests

* style

* dont cast attns to fp32

* did we update ruff? oke, let's just do what it asks

* fix pixtral after rebase
2025-05-08 18:18:54 +02:00

130 lines
4.5 KiB
Python

# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Pixtral model."""
import unittest
from transformers import (
PixtralVisionConfig,
PixtralVisionModel,
is_torch_available,
)
from transformers.testing_utils import (
require_torch,
torch_device,
)
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
if is_torch_available():
import torch
class PixtralVisionModelTester:
def __init__(
self,
parent,
batch_size=12,
image_size=30,
patch_size=2,
num_channels=3,
is_training=True,
hidden_size=32,
projection_dim=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
initializer_range=0.02,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.scope = scope
# in Pixtral, the seq length equals the number of patches * batch_size because the patches are flattened
self.seq_length = (image_size // patch_size) ** 2 * batch_size
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
image_sizes = torch.tensor(
[[self.image_size, self.image_size]] * self.batch_size, dtype=torch.long, device=torch_device
)
config = self.get_config()
return config, pixel_values, image_sizes
def get_config(self):
return PixtralVisionConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
initializer_range=self.initializer_range,
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, image_sizes = config_and_inputs
inputs_dict = {"pixel_values": pixel_values, "image_sizes": image_sizes}
return config, inputs_dict
@require_torch
class PixtralVisionModelModelTest(ModelTesterMixin, unittest.TestCase):
"""
Model tester for `PixtralVisionModel`.
"""
all_model_classes = (PixtralVisionModel,) if is_torch_available() else ()
additional_model_inputs = ["image_sizes"]
test_pruning = False
test_head_masking = False
test_torchscript = False
test_resize_embeddings = False
def setUp(self):
self.model_tester = PixtralVisionModelTester(self)
self.config_tester = ConfigTester(self, config_class=PixtralVisionConfig, has_text_modality=False)
def test_model_get_set_embeddings(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, torch.nn.Linear))