mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-14 01:58:22 +06:00
527 lines
22 KiB
Python
527 lines
22 KiB
Python
import os
|
|
from pathlib import Path
|
|
from tempfile import NamedTemporaryFile
|
|
from unittest import TestCase
|
|
from unittest.mock import patch
|
|
|
|
import pytest
|
|
|
|
from parameterized import parameterized
|
|
from transformers import AutoConfig, PreTrainedTokenizerBase, is_tf_available, is_torch_available
|
|
from transformers.onnx import (
|
|
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
|
|
OnnxConfig,
|
|
OnnxConfigWithPast,
|
|
ParameterFormat,
|
|
export,
|
|
validate_model_outputs,
|
|
)
|
|
from transformers.onnx.utils import (
|
|
compute_effective_axis_dimension,
|
|
compute_serialized_parameters_size,
|
|
get_preprocessor,
|
|
)
|
|
from transformers.testing_utils import require_onnx, require_rjieba, require_tf, require_torch, require_vision, slow
|
|
|
|
|
|
if is_torch_available() or is_tf_available():
|
|
from transformers.onnx.features import FeaturesManager
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers.models.deberta import modeling_deberta
|
|
|
|
|
|
@require_onnx
|
|
class OnnxUtilsTestCaseV2(TestCase):
|
|
"""
|
|
Cover all the utilities involved to export ONNX models
|
|
"""
|
|
|
|
@require_torch
|
|
@patch("transformers.onnx.convert.is_torch_onnx_dict_inputs_support_available", return_value=False)
|
|
def test_ensure_pytorch_version_ge_1_8_0(self, mock_is_torch_onnx_dict_inputs_support_available):
|
|
"""
|
|
Ensure we raise an Exception if the pytorch version is unsupported (< 1.8.0)
|
|
"""
|
|
self.assertRaises(AssertionError, export, None, None, None, None, None)
|
|
mock_is_torch_onnx_dict_inputs_support_available.assert_called()
|
|
|
|
def test_compute_effective_axis_dimension(self):
|
|
"""
|
|
When exporting ONNX model with dynamic axis (batch or sequence) we set batch_size and/or sequence_length = -1.
|
|
We cannot generate an effective tensor with axis dim == -1, so we trick by using some "fixed" values
|
|
(> 1 to avoid ONNX squeezing the axis).
|
|
|
|
This test ensure we are correctly replacing generated batch / sequence tensor with axis > 1
|
|
"""
|
|
|
|
# Dynamic axis (batch, no token added by the tokenizer)
|
|
self.assertEqual(compute_effective_axis_dimension(-1, fixed_dimension=2, num_token_to_add=0), 2)
|
|
|
|
# Static axis (batch, no token added by the tokenizer)
|
|
self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=2, num_token_to_add=0), 2)
|
|
|
|
# Dynamic axis (sequence, token added by the tokenizer 2 (no pair))
|
|
self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=2), 6)
|
|
self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=2), 6)
|
|
|
|
# Dynamic axis (sequence, token added by the tokenizer 3 (pair))
|
|
self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=3), 5)
|
|
self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=3), 5)
|
|
|
|
def test_compute_parameters_serialized_size(self):
|
|
"""
|
|
This test ensures we compute a "correct" approximation of the underlying storage requirement (size) for all the
|
|
parameters for the specified parameter's dtype.
|
|
"""
|
|
self.assertEqual(compute_serialized_parameters_size(2, ParameterFormat.Float), 2 * ParameterFormat.Float.size)
|
|
|
|
def test_flatten_output_collection_property(self):
|
|
"""
|
|
This test ensures we correctly flatten nested collection such as the one we use when returning past_keys.
|
|
past_keys = Tuple[Tuple]
|
|
|
|
ONNX exporter will export nested collections as ${collection_name}.${level_idx_0}.${level_idx_1}...${idx_n}
|
|
"""
|
|
self.assertEqual(
|
|
OnnxConfig.flatten_output_collection_property("past_key", [[0], [1], [2]]),
|
|
{
|
|
"past_key.0": 0,
|
|
"past_key.1": 1,
|
|
"past_key.2": 2,
|
|
},
|
|
)
|
|
|
|
|
|
class OnnxConfigTestCaseV2(TestCase):
|
|
"""
|
|
Cover the test for models default.
|
|
|
|
Default means no specific features is being enabled on the model.
|
|
"""
|
|
|
|
@patch.multiple(OnnxConfig, __abstractmethods__=set())
|
|
def test_use_external_data_format(self):
|
|
"""
|
|
External data format is required only if the serialized size of the parameters if bigger than 2Gb
|
|
"""
|
|
TWO_GB_LIMIT = EXTERNAL_DATA_FORMAT_SIZE_LIMIT
|
|
|
|
# No parameters
|
|
self.assertFalse(OnnxConfig.use_external_data_format(0))
|
|
|
|
# Some parameters
|
|
self.assertFalse(OnnxConfig.use_external_data_format(1))
|
|
|
|
# Almost 2Gb parameters
|
|
self.assertFalse(OnnxConfig.use_external_data_format((TWO_GB_LIMIT - 1) // ParameterFormat.Float.size))
|
|
|
|
# Exactly 2Gb parameters
|
|
self.assertTrue(OnnxConfig.use_external_data_format(TWO_GB_LIMIT))
|
|
|
|
# More than 2Gb parameters
|
|
self.assertTrue(OnnxConfig.use_external_data_format((TWO_GB_LIMIT + 1) // ParameterFormat.Float.size))
|
|
|
|
|
|
class OnnxConfigWithPastTestCaseV2(TestCase):
|
|
"""
|
|
Cover the tests for model which have use_cache feature (i.e. "with_past" for ONNX)
|
|
"""
|
|
|
|
SUPPORTED_WITH_PAST_CONFIGS = {}
|
|
# SUPPORTED_WITH_PAST_CONFIGS = {
|
|
# ("BART", BartConfig),
|
|
# ("GPT2", GPT2Config),
|
|
# # ("T5", T5Config)
|
|
# }
|
|
|
|
@patch.multiple(OnnxConfigWithPast, __abstractmethods__=set())
|
|
def test_use_past(self):
|
|
"""
|
|
Ensure the use_past variable is correctly being set
|
|
"""
|
|
for name, config in OnnxConfigWithPastTestCaseV2.SUPPORTED_WITH_PAST_CONFIGS:
|
|
with self.subTest(name):
|
|
self.assertFalse(
|
|
OnnxConfigWithPast.from_model_config(config()).use_past,
|
|
"OnnxConfigWithPast.from_model_config() should not use_past",
|
|
)
|
|
|
|
self.assertTrue(
|
|
OnnxConfigWithPast.with_past(config()).use_past,
|
|
"OnnxConfigWithPast.from_model_config() should use_past",
|
|
)
|
|
|
|
@patch.multiple(OnnxConfigWithPast, __abstractmethods__=set())
|
|
def test_values_override(self):
|
|
"""
|
|
Ensure the use_past variable correctly set the `use_cache` value in model's configuration
|
|
"""
|
|
for name, config in OnnxConfigWithPastTestCaseV2.SUPPORTED_WITH_PAST_CONFIGS:
|
|
with self.subTest(name):
|
|
# without past
|
|
onnx_config_default = OnnxConfigWithPast.from_model_config(config())
|
|
self.assertIsNotNone(onnx_config_default.values_override, "values_override should not be None")
|
|
self.assertIn("use_cache", onnx_config_default.values_override, "use_cache should be present")
|
|
self.assertFalse(
|
|
onnx_config_default.values_override["use_cache"], "use_cache should be False if not using past"
|
|
)
|
|
|
|
# with past
|
|
onnx_config_default = OnnxConfigWithPast.with_past(config())
|
|
self.assertIsNotNone(onnx_config_default.values_override, "values_override should not be None")
|
|
self.assertIn("use_cache", onnx_config_default.values_override, "use_cache should be present")
|
|
self.assertTrue(
|
|
onnx_config_default.values_override["use_cache"], "use_cache should be False if not using past"
|
|
)
|
|
|
|
|
|
PYTORCH_EXPORT_MODELS = {
|
|
("albert", "hf-internal-testing/tiny-random-AlbertModel"),
|
|
("bert", "hf-internal-testing/tiny-random-BertModel"),
|
|
("beit", "microsoft/beit-base-patch16-224"),
|
|
("big-bird", "hf-internal-testing/tiny-random-BigBirdModel"),
|
|
("camembert", "camembert-base"),
|
|
("clip", "hf-internal-testing/tiny-random-CLIPModel"),
|
|
("convbert", "hf-internal-testing/tiny-random-ConvBertModel"),
|
|
("codegen", "hf-internal-testing/tiny-random-CodeGenModel"),
|
|
("data2vec-text", "hf-internal-testing/tiny-random-Data2VecTextModel"),
|
|
("data2vec-vision", "facebook/data2vec-vision-base"),
|
|
("deberta", "hf-internal-testing/tiny-random-DebertaModel"),
|
|
("deberta-v2", "hf-internal-testing/tiny-random-DebertaV2Model"),
|
|
("deit", "facebook/deit-small-patch16-224"),
|
|
("convnext", "facebook/convnext-tiny-224"),
|
|
("detr", "facebook/detr-resnet-50"),
|
|
("distilbert", "hf-internal-testing/tiny-random-DistilBertModel"),
|
|
("electra", "hf-internal-testing/tiny-random-ElectraModel"),
|
|
("groupvit", "nvidia/groupvit-gcc-yfcc"),
|
|
("ibert", "kssteven/ibert-roberta-base"),
|
|
("imagegpt", "openai/imagegpt-small"),
|
|
("levit", "facebook/levit-128S"),
|
|
("layoutlm", "hf-internal-testing/tiny-random-LayoutLMModel"),
|
|
("layoutlmv3", "microsoft/layoutlmv3-base"),
|
|
("longformer", "allenai/longformer-base-4096"),
|
|
("mobilebert", "hf-internal-testing/tiny-random-MobileBertModel"),
|
|
("mobilenet_v1", "google/mobilenet_v1_0.75_192"),
|
|
("mobilenet_v2", "google/mobilenet_v2_0.35_96"),
|
|
("mobilevit", "apple/mobilevit-small"),
|
|
("owlvit", "google/owlvit-base-patch32"),
|
|
("perceiver", "hf-internal-testing/tiny-random-PerceiverModel", ("masked-lm", "sequence-classification")),
|
|
("perceiver", "hf-internal-testing/tiny-random-PerceiverModel", ("image-classification",)),
|
|
("resnet", "microsoft/resnet-50"),
|
|
("roberta", "hf-internal-testing/tiny-random-RobertaModel"),
|
|
("roformer", "hf-internal-testing/tiny-random-RoFormerModel"),
|
|
("segformer", "nvidia/segformer-b0-finetuned-ade-512-512"),
|
|
("squeezebert", "hf-internal-testing/tiny-random-SqueezeBertModel"),
|
|
("swin", "microsoft/swin-tiny-patch4-window7-224"),
|
|
("vit", "google/vit-base-patch16-224"),
|
|
("yolos", "hustvl/yolos-tiny"),
|
|
("whisper", "openai/whisper-tiny.en"),
|
|
("xlm", "hf-internal-testing/tiny-random-XLMModel"),
|
|
("xlm-roberta", "hf-internal-testing/tiny-random-XLMRobertaXLModel"),
|
|
}
|
|
|
|
PYTORCH_EXPORT_ENCODER_DECODER_MODELS = {
|
|
("vision-encoder-decoder", "nlpconnect/vit-gpt2-image-captioning"),
|
|
}
|
|
|
|
PYTORCH_EXPORT_WITH_PAST_MODELS = {
|
|
("bloom", "hf-internal-testing/tiny-random-BloomModel"),
|
|
("gpt2", "hf-internal-testing/tiny-random-GPT2Model"),
|
|
("gpt-neo", "hf-internal-testing/tiny-random-GPTNeoModel"),
|
|
}
|
|
|
|
PYTORCH_EXPORT_SEQ2SEQ_WITH_PAST_MODELS = {
|
|
("bart", "hf-internal-testing/tiny-random-BartModel"),
|
|
("bigbird-pegasus", "hf-internal-testing/tiny-random-BigBirdPegasusModel"),
|
|
("blenderbot-small", "facebook/blenderbot_small-90M"),
|
|
("blenderbot", "hf-internal-testing/tiny-random-BlenderbotModel"),
|
|
("longt5", "hf-internal-testing/tiny-random-LongT5Model"),
|
|
("marian", "Helsinki-NLP/opus-mt-en-de"),
|
|
("mbart", "sshleifer/tiny-mbart"),
|
|
("mt5", "google/mt5-base"),
|
|
("m2m-100", "hf-internal-testing/tiny-random-M2M100Model"),
|
|
("t5", "hf-internal-testing/tiny-random-T5Model"),
|
|
}
|
|
|
|
# TODO(lewtun): Include the same model types in `PYTORCH_EXPORT_MODELS` once TensorFlow has parity with the PyTorch model implementations.
|
|
TENSORFLOW_EXPORT_DEFAULT_MODELS = {
|
|
("albert", "hf-internal-testing/tiny-albert"),
|
|
("bert", "hf-internal-testing/tiny-random-BertModel"),
|
|
("camembert", "camembert-base"),
|
|
("distilbert", "hf-internal-testing/tiny-random-DistilBertModel"),
|
|
("roberta", "hf-internal-testing/tiny-random-RobertaModel"),
|
|
}
|
|
|
|
# TODO(lewtun): Include the same model types in `PYTORCH_EXPORT_WITH_PAST_MODELS` once TensorFlow has parity with the PyTorch model implementations.
|
|
TENSORFLOW_EXPORT_WITH_PAST_MODELS = {}
|
|
|
|
# TODO(lewtun): Include the same model types in `PYTORCH_EXPORT_SEQ2SEQ_WITH_PAST_MODELS` once TensorFlow has parity with the PyTorch model implementations.
|
|
TENSORFLOW_EXPORT_SEQ2SEQ_WITH_PAST_MODELS = {}
|
|
|
|
|
|
def _get_models_to_test(export_models_list):
|
|
models_to_test = []
|
|
if is_torch_available() or is_tf_available():
|
|
for name, model, *features in export_models_list:
|
|
if features:
|
|
feature_config_mapping = {
|
|
feature: FeaturesManager.get_config(name, feature) for _ in features for feature in _
|
|
}
|
|
else:
|
|
feature_config_mapping = FeaturesManager.get_supported_features_for_model_type(name)
|
|
|
|
for feature, onnx_config_class_constructor in feature_config_mapping.items():
|
|
models_to_test.append((f"{name}_{feature}", name, model, feature, onnx_config_class_constructor))
|
|
return sorted(models_to_test)
|
|
else:
|
|
# Returning some dummy test that should not be ever called because of the @require_torch / @require_tf
|
|
# decorators.
|
|
# The reason for not returning an empty list is because parameterized.expand complains when it's empty.
|
|
return [("dummy", "dummy", "dummy", "dummy", OnnxConfig.from_model_config)]
|
|
|
|
|
|
class OnnxExportTestCaseV2(TestCase):
|
|
"""
|
|
Integration tests ensuring supported models are correctly exported
|
|
"""
|
|
|
|
def _onnx_export(
|
|
self, test_name, name, model_name, feature, onnx_config_class_constructor, device="cpu", framework="pt"
|
|
):
|
|
from transformers.onnx import export
|
|
|
|
model_class = FeaturesManager.get_model_class_for_feature(feature, framework=framework)
|
|
config = AutoConfig.from_pretrained(model_name)
|
|
model = model_class.from_config(config)
|
|
|
|
# Dynamic axes aren't supported for YOLO-like models. This means they cannot be exported to ONNX on CUDA devices.
|
|
# See: https://github.com/ultralytics/yolov5/pull/8378
|
|
if model.__class__.__name__.startswith("Yolos") and device != "cpu":
|
|
return
|
|
|
|
# ONNX inference fails with the following name, feature, framework parameterizations
|
|
# See: https://github.com/huggingface/transformers/issues/19357
|
|
if (name, feature, framework) in {
|
|
("deberta-v2", "question-answering", "pt"),
|
|
("deberta-v2", "multiple-choice", "pt"),
|
|
("roformer", "multiple-choice", "pt"),
|
|
("groupvit", "default", "pt"),
|
|
("perceiver", "masked-lm", "pt"),
|
|
("perceiver", "sequence-classification", "pt"),
|
|
("perceiver", "image-classification", "pt"),
|
|
("bert", "multiple-choice", "tf"),
|
|
("camembert", "multiple-choice", "tf"),
|
|
("roberta", "multiple-choice", "tf"),
|
|
}:
|
|
return
|
|
|
|
onnx_config = onnx_config_class_constructor(model.config)
|
|
|
|
if is_torch_available():
|
|
from transformers.utils import torch_version
|
|
|
|
if torch_version < onnx_config.torch_onnx_minimum_version:
|
|
pytest.skip(
|
|
"Skipping due to incompatible PyTorch version. Minimum required is"
|
|
f" {onnx_config.torch_onnx_minimum_version}, got: {torch_version}"
|
|
)
|
|
|
|
preprocessor = get_preprocessor(model_name)
|
|
|
|
# Useful for causal lm models that do not use pad tokens.
|
|
if isinstance(preprocessor, PreTrainedTokenizerBase) and not getattr(config, "pad_token_id", None):
|
|
config.pad_token_id = preprocessor.eos_token_id
|
|
|
|
with NamedTemporaryFile("w") as output:
|
|
try:
|
|
onnx_inputs, onnx_outputs = export(
|
|
preprocessor, model, onnx_config, onnx_config.default_onnx_opset, Path(output.name), device=device
|
|
)
|
|
validate_model_outputs(
|
|
onnx_config,
|
|
preprocessor,
|
|
model,
|
|
Path(output.name),
|
|
onnx_outputs,
|
|
onnx_config.atol_for_validation,
|
|
)
|
|
except (RuntimeError, ValueError) as e:
|
|
self.fail(f"{name}, {feature} -> {e}")
|
|
|
|
def _onnx_export_encoder_decoder_models(
|
|
self, test_name, name, model_name, feature, onnx_config_class_constructor, device="cpu"
|
|
):
|
|
from transformers import AutoFeatureExtractor, AutoTokenizer
|
|
from transformers.onnx import export
|
|
|
|
model_class = FeaturesManager.get_model_class_for_feature(feature)
|
|
config = AutoConfig.from_pretrained(model_name)
|
|
model = model_class.from_config(config)
|
|
|
|
onnx_config = onnx_config_class_constructor(model.config)
|
|
|
|
if is_torch_available():
|
|
from transformers.utils import torch_version
|
|
|
|
if torch_version < onnx_config.torch_onnx_minimum_version:
|
|
pytest.skip(
|
|
"Skipping due to incompatible PyTorch version. Minimum required is"
|
|
f" {onnx_config.torch_onnx_minimum_version}, got: {torch_version}"
|
|
)
|
|
|
|
encoder_model = model.get_encoder()
|
|
decoder_model = model.get_decoder()
|
|
|
|
encoder_onnx_config = onnx_config.get_encoder_config(encoder_model.config)
|
|
decoder_onnx_config = onnx_config.get_decoder_config(encoder_model.config, decoder_model.config, feature)
|
|
|
|
preprocessor = AutoFeatureExtractor.from_pretrained(model_name)
|
|
|
|
onnx_opset = max(encoder_onnx_config.default_onnx_opset, decoder_onnx_config.default_onnx_opset)
|
|
|
|
with NamedTemporaryFile("w") as encoder_output:
|
|
onnx_inputs, onnx_outputs = export(
|
|
preprocessor, encoder_model, encoder_onnx_config, onnx_opset, Path(encoder_output.name), device=device
|
|
)
|
|
validate_model_outputs(
|
|
encoder_onnx_config,
|
|
preprocessor,
|
|
encoder_model,
|
|
Path(encoder_output.name),
|
|
onnx_outputs,
|
|
encoder_onnx_config.atol_for_validation,
|
|
)
|
|
|
|
preprocessor = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
with NamedTemporaryFile("w") as decoder_output:
|
|
_, onnx_outputs = export(
|
|
preprocessor,
|
|
decoder_model,
|
|
decoder_onnx_config,
|
|
onnx_config.default_onnx_opset,
|
|
Path(decoder_output.name),
|
|
device=device,
|
|
)
|
|
validate_model_outputs(
|
|
decoder_onnx_config,
|
|
preprocessor,
|
|
decoder_model,
|
|
Path(decoder_output.name),
|
|
onnx_outputs,
|
|
decoder_onnx_config.atol_for_validation,
|
|
)
|
|
|
|
@parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_MODELS))
|
|
@slow
|
|
@require_torch
|
|
@require_vision
|
|
@require_rjieba
|
|
def test_pytorch_export(self, test_name, name, model_name, feature, onnx_config_class_constructor):
|
|
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor)
|
|
|
|
@parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_MODELS))
|
|
@slow
|
|
@require_torch
|
|
@require_vision
|
|
@require_rjieba
|
|
def test_pytorch_export_on_cuda(self, test_name, name, model_name, feature, onnx_config_class_constructor):
|
|
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, device="cuda")
|
|
|
|
@parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_ENCODER_DECODER_MODELS))
|
|
@slow
|
|
@require_torch
|
|
@require_vision
|
|
@require_rjieba
|
|
def test_pytorch_export_encoder_decoder_models(
|
|
self, test_name, name, model_name, feature, onnx_config_class_constructor
|
|
):
|
|
self._onnx_export_encoder_decoder_models(test_name, name, model_name, feature, onnx_config_class_constructor)
|
|
|
|
@parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_ENCODER_DECODER_MODELS))
|
|
@slow
|
|
@require_torch
|
|
@require_vision
|
|
@require_rjieba
|
|
def test_pytorch_export_encoder_decoder_models_on_cuda(
|
|
self, test_name, name, model_name, feature, onnx_config_class_constructor
|
|
):
|
|
self._onnx_export_encoder_decoder_models(
|
|
test_name, name, model_name, feature, onnx_config_class_constructor, device="cuda"
|
|
)
|
|
|
|
@parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_WITH_PAST_MODELS))
|
|
@slow
|
|
@require_torch
|
|
def test_pytorch_export_with_past(self, test_name, name, model_name, feature, onnx_config_class_constructor):
|
|
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor)
|
|
|
|
@parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_SEQ2SEQ_WITH_PAST_MODELS))
|
|
@slow
|
|
@require_torch
|
|
def test_pytorch_export_seq2seq_with_past(
|
|
self, test_name, name, model_name, feature, onnx_config_class_constructor
|
|
):
|
|
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor)
|
|
|
|
@parameterized.expand(_get_models_to_test(TENSORFLOW_EXPORT_DEFAULT_MODELS))
|
|
@slow
|
|
@require_tf
|
|
@require_vision
|
|
def test_tensorflow_export(self, test_name, name, model_name, feature, onnx_config_class_constructor):
|
|
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, framework="tf")
|
|
|
|
@parameterized.expand(_get_models_to_test(TENSORFLOW_EXPORT_WITH_PAST_MODELS), skip_on_empty=True)
|
|
@slow
|
|
@require_tf
|
|
def test_tensorflow_export_with_past(self, test_name, name, model_name, feature, onnx_config_class_constructor):
|
|
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, framework="tf")
|
|
|
|
@parameterized.expand(_get_models_to_test(TENSORFLOW_EXPORT_SEQ2SEQ_WITH_PAST_MODELS), skip_on_empty=True)
|
|
@slow
|
|
@require_tf
|
|
def test_tensorflow_export_seq2seq_with_past(
|
|
self, test_name, name, model_name, feature, onnx_config_class_constructor
|
|
):
|
|
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, framework="tf")
|
|
|
|
|
|
class StableDropoutTestCase(TestCase):
|
|
"""Tests export of StableDropout module."""
|
|
|
|
@require_torch
|
|
@pytest.mark.filterwarnings("ignore:.*Dropout.*:UserWarning:torch.onnx.*") # torch.onnx is spammy.
|
|
def test_training(self):
|
|
"""Tests export of StableDropout in training mode."""
|
|
devnull = open(os.devnull, "wb")
|
|
# drop_prob must be > 0 for the test to be meaningful
|
|
sd = modeling_deberta.StableDropout(0.1)
|
|
# Avoid warnings in training mode
|
|
do_constant_folding = False
|
|
# Dropout is a no-op in inference mode
|
|
training = torch.onnx.TrainingMode.PRESERVE
|
|
input = (torch.randn(2, 2),)
|
|
|
|
torch.onnx.export(
|
|
sd,
|
|
input,
|
|
devnull,
|
|
opset_version=12, # Minimum supported
|
|
do_constant_folding=do_constant_folding,
|
|
training=training,
|
|
)
|
|
|
|
# Expected to fail with opset_version < 12
|
|
with self.assertRaises(Exception):
|
|
torch.onnx.export(
|
|
sd,
|
|
input,
|
|
devnull,
|
|
opset_version=11,
|
|
do_constant_folding=do_constant_folding,
|
|
training=training,
|
|
)
|