mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-14 01:58:22 +06:00

* add model files etc for MobileNetV2 rename files for MobileNetV1 initial implementation of MobileNetV1 fix conversion script cleanup write docs tweaks fix conversion script extract hidden states fix test cases make fixup fixup it all remove main from doc link fixes fix tests fix up use google org fix weird assert * fixup * use google organization for checkpoints
530 lines
22 KiB
Python
530 lines
22 KiB
Python
import os
|
|
from pathlib import Path
|
|
from tempfile import NamedTemporaryFile
|
|
from unittest import TestCase
|
|
from unittest.mock import patch
|
|
|
|
import pytest
|
|
|
|
from parameterized import parameterized
|
|
from transformers import AutoConfig, PreTrainedTokenizerBase, is_tf_available, is_torch_available
|
|
from transformers.onnx import (
|
|
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
|
|
OnnxConfig,
|
|
OnnxConfigWithPast,
|
|
ParameterFormat,
|
|
export,
|
|
validate_model_outputs,
|
|
)
|
|
from transformers.onnx.utils import (
|
|
compute_effective_axis_dimension,
|
|
compute_serialized_parameters_size,
|
|
get_preprocessor,
|
|
)
|
|
from transformers.testing_utils import require_onnx, require_rjieba, require_tf, require_torch, require_vision, slow
|
|
|
|
|
|
if is_torch_available() or is_tf_available():
|
|
from transformers.onnx.features import FeaturesManager
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers.models.deberta import modeling_deberta
|
|
|
|
|
|
@require_onnx
|
|
class OnnxUtilsTestCaseV2(TestCase):
|
|
"""
|
|
Cover all the utilities involved to export ONNX models
|
|
"""
|
|
|
|
@require_torch
|
|
@patch("transformers.onnx.convert.is_torch_onnx_dict_inputs_support_available", return_value=False)
|
|
def test_ensure_pytorch_version_ge_1_8_0(self, mock_is_torch_onnx_dict_inputs_support_available):
|
|
"""
|
|
Ensure we raise an Exception if the pytorch version is unsupported (< 1.8.0)
|
|
"""
|
|
self.assertRaises(AssertionError, export, None, None, None, None, None)
|
|
mock_is_torch_onnx_dict_inputs_support_available.assert_called()
|
|
|
|
def test_compute_effective_axis_dimension(self):
|
|
"""
|
|
When exporting ONNX model with dynamic axis (batch or sequence) we set batch_size and/or sequence_length = -1.
|
|
We cannot generate an effective tensor with axis dim == -1, so we trick by using some "fixed" values
|
|
(> 1 to avoid ONNX squeezing the axis).
|
|
|
|
This test ensure we are correctly replacing generated batch / sequence tensor with axis > 1
|
|
"""
|
|
|
|
# Dynamic axis (batch, no token added by the tokenizer)
|
|
self.assertEqual(compute_effective_axis_dimension(-1, fixed_dimension=2, num_token_to_add=0), 2)
|
|
|
|
# Static axis (batch, no token added by the tokenizer)
|
|
self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=2, num_token_to_add=0), 2)
|
|
|
|
# Dynamic axis (sequence, token added by the tokenizer 2 (no pair))
|
|
self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=2), 6)
|
|
self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=2), 6)
|
|
|
|
# Dynamic axis (sequence, token added by the tokenizer 3 (pair))
|
|
self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=3), 5)
|
|
self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=3), 5)
|
|
|
|
def test_compute_parameters_serialized_size(self):
|
|
"""
|
|
This test ensures we compute a "correct" approximation of the underlying storage requirement (size) for all the
|
|
parameters for the specified parameter's dtype.
|
|
"""
|
|
self.assertEqual(compute_serialized_parameters_size(2, ParameterFormat.Float), 2 * ParameterFormat.Float.size)
|
|
|
|
def test_flatten_output_collection_property(self):
|
|
"""
|
|
This test ensures we correctly flatten nested collection such as the one we use when returning past_keys.
|
|
past_keys = Tuple[Tuple]
|
|
|
|
ONNX exporter will export nested collections as ${collection_name}.${level_idx_0}.${level_idx_1}...${idx_n}
|
|
"""
|
|
self.assertEqual(
|
|
OnnxConfig.flatten_output_collection_property("past_key", [[0], [1], [2]]),
|
|
{
|
|
"past_key.0": 0,
|
|
"past_key.1": 1,
|
|
"past_key.2": 2,
|
|
},
|
|
)
|
|
|
|
|
|
class OnnxConfigTestCaseV2(TestCase):
|
|
"""
|
|
Cover the test for models default.
|
|
|
|
Default means no specific features is being enabled on the model.
|
|
"""
|
|
|
|
@patch.multiple(OnnxConfig, __abstractmethods__=set())
|
|
def test_use_external_data_format(self):
|
|
"""
|
|
External data format is required only if the serialized size of the parameters if bigger than 2Gb
|
|
"""
|
|
TWO_GB_LIMIT = EXTERNAL_DATA_FORMAT_SIZE_LIMIT
|
|
|
|
# No parameters
|
|
self.assertFalse(OnnxConfig.use_external_data_format(0))
|
|
|
|
# Some parameters
|
|
self.assertFalse(OnnxConfig.use_external_data_format(1))
|
|
|
|
# Almost 2Gb parameters
|
|
self.assertFalse(OnnxConfig.use_external_data_format((TWO_GB_LIMIT - 1) // ParameterFormat.Float.size))
|
|
|
|
# Exactly 2Gb parameters
|
|
self.assertTrue(OnnxConfig.use_external_data_format(TWO_GB_LIMIT))
|
|
|
|
# More than 2Gb parameters
|
|
self.assertTrue(OnnxConfig.use_external_data_format((TWO_GB_LIMIT + 1) // ParameterFormat.Float.size))
|
|
|
|
|
|
class OnnxConfigWithPastTestCaseV2(TestCase):
|
|
"""
|
|
Cover the tests for model which have use_cache feature (i.e. "with_past" for ONNX)
|
|
"""
|
|
|
|
SUPPORTED_WITH_PAST_CONFIGS = {}
|
|
# SUPPORTED_WITH_PAST_CONFIGS = {
|
|
# ("BART", BartConfig),
|
|
# ("GPT2", GPT2Config),
|
|
# # ("T5", T5Config)
|
|
# }
|
|
|
|
@patch.multiple(OnnxConfigWithPast, __abstractmethods__=set())
|
|
def test_use_past(self):
|
|
"""
|
|
Ensure the use_past variable is correctly being set
|
|
"""
|
|
for name, config in OnnxConfigWithPastTestCaseV2.SUPPORTED_WITH_PAST_CONFIGS:
|
|
with self.subTest(name):
|
|
self.assertFalse(
|
|
OnnxConfigWithPast.from_model_config(config()).use_past,
|
|
"OnnxConfigWithPast.from_model_config() should not use_past",
|
|
)
|
|
|
|
self.assertTrue(
|
|
OnnxConfigWithPast.with_past(config()).use_past,
|
|
"OnnxConfigWithPast.from_model_config() should use_past",
|
|
)
|
|
|
|
@patch.multiple(OnnxConfigWithPast, __abstractmethods__=set())
|
|
def test_values_override(self):
|
|
"""
|
|
Ensure the use_past variable correctly set the `use_cache` value in model's configuration
|
|
"""
|
|
for name, config in OnnxConfigWithPastTestCaseV2.SUPPORTED_WITH_PAST_CONFIGS:
|
|
with self.subTest(name):
|
|
# without past
|
|
onnx_config_default = OnnxConfigWithPast.from_model_config(config())
|
|
self.assertIsNotNone(onnx_config_default.values_override, "values_override should not be None")
|
|
self.assertIn("use_cache", onnx_config_default.values_override, "use_cache should be present")
|
|
self.assertFalse(
|
|
onnx_config_default.values_override["use_cache"], "use_cache should be False if not using past"
|
|
)
|
|
|
|
# with past
|
|
onnx_config_default = OnnxConfigWithPast.with_past(config())
|
|
self.assertIsNotNone(onnx_config_default.values_override, "values_override should not be None")
|
|
self.assertIn("use_cache", onnx_config_default.values_override, "use_cache should be present")
|
|
self.assertTrue(
|
|
onnx_config_default.values_override["use_cache"], "use_cache should be False if not using past"
|
|
)
|
|
|
|
|
|
PYTORCH_EXPORT_MODELS = {
|
|
("albert", "hf-internal-testing/tiny-albert"),
|
|
("bert", "bert-base-cased"),
|
|
("big-bird", "google/bigbird-roberta-base"),
|
|
("ibert", "kssteven/ibert-roberta-base"),
|
|
("camembert", "camembert-base"),
|
|
("clip", "openai/clip-vit-base-patch32"),
|
|
("convbert", "YituTech/conv-bert-base"),
|
|
("codegen", "Salesforce/codegen-350M-multi"),
|
|
("deberta", "microsoft/deberta-base"),
|
|
("deberta-v2", "microsoft/deberta-v2-xlarge"),
|
|
("convnext", "facebook/convnext-tiny-224"),
|
|
("detr", "facebook/detr-resnet-50"),
|
|
("distilbert", "distilbert-base-cased"),
|
|
("electra", "google/electra-base-generator"),
|
|
("imagegpt", "openai/imagegpt-small"),
|
|
("resnet", "microsoft/resnet-50"),
|
|
("roberta", "roberta-base"),
|
|
("roformer", "junnyu/roformer_chinese_base"),
|
|
("squeezebert", "squeezebert/squeezebert-uncased"),
|
|
("mobilebert", "google/mobilebert-uncased"),
|
|
("mobilenet_v1", "google/mobilenet_v1_0.75_192"),
|
|
("mobilenet_v2", "google/mobilenet_v2_0.35_96"),
|
|
("mobilevit", "apple/mobilevit-small"),
|
|
("xlm", "xlm-clm-ende-1024"),
|
|
("xlm-roberta", "xlm-roberta-base"),
|
|
("layoutlm", "microsoft/layoutlm-base-uncased"),
|
|
("layoutlmv3", "microsoft/layoutlmv3-base"),
|
|
("groupvit", "nvidia/groupvit-gcc-yfcc"),
|
|
("levit", "facebook/levit-128S"),
|
|
("owlvit", "google/owlvit-base-patch32"),
|
|
("vit", "google/vit-base-patch16-224"),
|
|
("deit", "facebook/deit-small-patch16-224"),
|
|
("beit", "microsoft/beit-base-patch16-224"),
|
|
("data2vec-text", "facebook/data2vec-text-base"),
|
|
("data2vec-vision", "facebook/data2vec-vision-base"),
|
|
("perceiver", "deepmind/language-perceiver", ("masked-lm", "sequence-classification")),
|
|
("perceiver", "deepmind/vision-perceiver-conv", ("image-classification",)),
|
|
("longformer", "allenai/longformer-base-4096"),
|
|
("yolos", "hustvl/yolos-tiny"),
|
|
("segformer", "nvidia/segformer-b0-finetuned-ade-512-512"),
|
|
("swin", "microsoft/swin-tiny-patch4-window7-224"),
|
|
("whisper", "openai/whisper-tiny.en"),
|
|
}
|
|
|
|
PYTORCH_EXPORT_ENCODER_DECODER_MODELS = {
|
|
("vision-encoder-decoder", "nlpconnect/vit-gpt2-image-captioning"),
|
|
}
|
|
|
|
PYTORCH_EXPORT_WITH_PAST_MODELS = {
|
|
("bloom", "bigscience/bloom-560m"),
|
|
("gpt2", "gpt2"),
|
|
("gpt-neo", "EleutherAI/gpt-neo-125M"),
|
|
}
|
|
|
|
PYTORCH_EXPORT_SEQ2SEQ_WITH_PAST_MODELS = {
|
|
("bart", "facebook/bart-base"),
|
|
("mbart", "sshleifer/tiny-mbart"),
|
|
("t5", "t5-small"),
|
|
("marian", "Helsinki-NLP/opus-mt-en-de"),
|
|
("mt5", "google/mt5-base"),
|
|
("m2m-100", "facebook/m2m100_418M"),
|
|
("blenderbot-small", "facebook/blenderbot_small-90M"),
|
|
("blenderbot", "facebook/blenderbot-400M-distill"),
|
|
("bigbird-pegasus", "google/bigbird-pegasus-large-arxiv"),
|
|
("longt5", "google/long-t5-local-base"),
|
|
# Disable for now as it causes fatal error `Floating point exception (core dumped)` and the subsequential tests are
|
|
# not run.
|
|
# ("longt5", "google/long-t5-tglobal-base"),
|
|
}
|
|
|
|
# TODO(lewtun): Include the same model types in `PYTORCH_EXPORT_MODELS` once TensorFlow has parity with the PyTorch model implementations.
|
|
TENSORFLOW_EXPORT_DEFAULT_MODELS = {
|
|
("albert", "hf-internal-testing/tiny-albert"),
|
|
("bert", "bert-base-cased"),
|
|
("camembert", "camembert-base"),
|
|
("distilbert", "distilbert-base-cased"),
|
|
("roberta", "roberta-base"),
|
|
}
|
|
|
|
# TODO(lewtun): Include the same model types in `PYTORCH_EXPORT_WITH_PAST_MODELS` once TensorFlow has parity with the PyTorch model implementations.
|
|
TENSORFLOW_EXPORT_WITH_PAST_MODELS = {}
|
|
|
|
# TODO(lewtun): Include the same model types in `PYTORCH_EXPORT_SEQ2SEQ_WITH_PAST_MODELS` once TensorFlow has parity with the PyTorch model implementations.
|
|
TENSORFLOW_EXPORT_SEQ2SEQ_WITH_PAST_MODELS = {}
|
|
|
|
|
|
def _get_models_to_test(export_models_list):
|
|
models_to_test = []
|
|
if is_torch_available() or is_tf_available():
|
|
for name, model, *features in export_models_list:
|
|
if features:
|
|
feature_config_mapping = {
|
|
feature: FeaturesManager.get_config(name, feature) for _ in features for feature in _
|
|
}
|
|
else:
|
|
feature_config_mapping = FeaturesManager.get_supported_features_for_model_type(name)
|
|
|
|
for feature, onnx_config_class_constructor in feature_config_mapping.items():
|
|
models_to_test.append((f"{name}_{feature}", name, model, feature, onnx_config_class_constructor))
|
|
return sorted(models_to_test)
|
|
else:
|
|
# Returning some dummy test that should not be ever called because of the @require_torch / @require_tf
|
|
# decorators.
|
|
# The reason for not returning an empty list is because parameterized.expand complains when it's empty.
|
|
return [("dummy", "dummy", "dummy", "dummy", OnnxConfig.from_model_config)]
|
|
|
|
|
|
class OnnxExportTestCaseV2(TestCase):
|
|
"""
|
|
Integration tests ensuring supported models are correctly exported
|
|
"""
|
|
|
|
def _onnx_export(
|
|
self, test_name, name, model_name, feature, onnx_config_class_constructor, device="cpu", framework="pt"
|
|
):
|
|
from transformers.onnx import export
|
|
|
|
model_class = FeaturesManager.get_model_class_for_feature(feature, framework=framework)
|
|
config = AutoConfig.from_pretrained(model_name)
|
|
model = model_class.from_config(config)
|
|
|
|
# Dynamic axes aren't supported for YOLO-like models. This means they cannot be exported to ONNX on CUDA devices.
|
|
# See: https://github.com/ultralytics/yolov5/pull/8378
|
|
if model.__class__.__name__.startswith("Yolos") and device != "cpu":
|
|
return
|
|
|
|
# ONNX inference fails with the following name, feature, framework parameterizations
|
|
# See: https://github.com/huggingface/transformers/issues/19357
|
|
if (name, feature, framework) in {
|
|
("deberta-v2", "question-answering", "pt"),
|
|
("deberta-v2", "multiple-choice", "pt"),
|
|
("roformer", "multiple-choice", "pt"),
|
|
("groupvit", "default", "pt"),
|
|
("perceiver", "masked-lm", "pt"),
|
|
("perceiver", "sequence-classification", "pt"),
|
|
("perceiver", "image-classification", "pt"),
|
|
("bert", "multiple-choice", "tf"),
|
|
("camembert", "multiple-choice", "tf"),
|
|
("roberta", "multiple-choice", "tf"),
|
|
}:
|
|
return
|
|
|
|
onnx_config = onnx_config_class_constructor(model.config)
|
|
|
|
if is_torch_available():
|
|
from transformers.utils import torch_version
|
|
|
|
if torch_version < onnx_config.torch_onnx_minimum_version:
|
|
pytest.skip(
|
|
"Skipping due to incompatible PyTorch version. Minimum required is"
|
|
f" {onnx_config.torch_onnx_minimum_version}, got: {torch_version}"
|
|
)
|
|
|
|
preprocessor = get_preprocessor(model_name)
|
|
|
|
# Useful for causal lm models that do not use pad tokens.
|
|
if isinstance(preprocessor, PreTrainedTokenizerBase) and not getattr(config, "pad_token_id", None):
|
|
config.pad_token_id = preprocessor.eos_token_id
|
|
|
|
with NamedTemporaryFile("w") as output:
|
|
try:
|
|
onnx_inputs, onnx_outputs = export(
|
|
preprocessor, model, onnx_config, onnx_config.default_onnx_opset, Path(output.name), device=device
|
|
)
|
|
validate_model_outputs(
|
|
onnx_config,
|
|
preprocessor,
|
|
model,
|
|
Path(output.name),
|
|
onnx_outputs,
|
|
onnx_config.atol_for_validation,
|
|
)
|
|
except (RuntimeError, ValueError) as e:
|
|
self.fail(f"{name}, {feature} -> {e}")
|
|
|
|
def _onnx_export_encoder_decoder_models(
|
|
self, test_name, name, model_name, feature, onnx_config_class_constructor, device="cpu"
|
|
):
|
|
from transformers import AutoFeatureExtractor, AutoTokenizer
|
|
from transformers.onnx import export
|
|
|
|
model_class = FeaturesManager.get_model_class_for_feature(feature)
|
|
config = AutoConfig.from_pretrained(model_name)
|
|
model = model_class.from_config(config)
|
|
|
|
onnx_config = onnx_config_class_constructor(model.config)
|
|
|
|
if is_torch_available():
|
|
from transformers.utils import torch_version
|
|
|
|
if torch_version < onnx_config.torch_onnx_minimum_version:
|
|
pytest.skip(
|
|
"Skipping due to incompatible PyTorch version. Minimum required is"
|
|
f" {onnx_config.torch_onnx_minimum_version}, got: {torch_version}"
|
|
)
|
|
|
|
encoder_model = model.get_encoder()
|
|
decoder_model = model.get_decoder()
|
|
|
|
encoder_onnx_config = onnx_config.get_encoder_config(encoder_model.config)
|
|
decoder_onnx_config = onnx_config.get_decoder_config(encoder_model.config, decoder_model.config, feature)
|
|
|
|
preprocessor = AutoFeatureExtractor.from_pretrained(model_name)
|
|
|
|
onnx_opset = max(encoder_onnx_config.default_onnx_opset, decoder_onnx_config.default_onnx_opset)
|
|
|
|
with NamedTemporaryFile("w") as encoder_output:
|
|
onnx_inputs, onnx_outputs = export(
|
|
preprocessor, encoder_model, encoder_onnx_config, onnx_opset, Path(encoder_output.name), device=device
|
|
)
|
|
validate_model_outputs(
|
|
encoder_onnx_config,
|
|
preprocessor,
|
|
encoder_model,
|
|
Path(encoder_output.name),
|
|
onnx_outputs,
|
|
encoder_onnx_config.atol_for_validation,
|
|
)
|
|
|
|
preprocessor = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
with NamedTemporaryFile("w") as decoder_output:
|
|
_, onnx_outputs = export(
|
|
preprocessor,
|
|
decoder_model,
|
|
decoder_onnx_config,
|
|
onnx_config.default_onnx_opset,
|
|
Path(decoder_output.name),
|
|
device=device,
|
|
)
|
|
validate_model_outputs(
|
|
decoder_onnx_config,
|
|
preprocessor,
|
|
decoder_model,
|
|
Path(decoder_output.name),
|
|
onnx_outputs,
|
|
decoder_onnx_config.atol_for_validation,
|
|
)
|
|
|
|
@parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_MODELS))
|
|
@slow
|
|
@require_torch
|
|
@require_vision
|
|
@require_rjieba
|
|
def test_pytorch_export(self, test_name, name, model_name, feature, onnx_config_class_constructor):
|
|
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor)
|
|
|
|
@parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_MODELS))
|
|
@slow
|
|
@require_torch
|
|
@require_vision
|
|
@require_rjieba
|
|
def test_pytorch_export_on_cuda(self, test_name, name, model_name, feature, onnx_config_class_constructor):
|
|
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, device="cuda")
|
|
|
|
@parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_ENCODER_DECODER_MODELS))
|
|
@slow
|
|
@require_torch
|
|
@require_vision
|
|
@require_rjieba
|
|
def test_pytorch_export_encoder_decoder_models(
|
|
self, test_name, name, model_name, feature, onnx_config_class_constructor
|
|
):
|
|
self._onnx_export_encoder_decoder_models(test_name, name, model_name, feature, onnx_config_class_constructor)
|
|
|
|
@parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_ENCODER_DECODER_MODELS))
|
|
@slow
|
|
@require_torch
|
|
@require_vision
|
|
@require_rjieba
|
|
def test_pytorch_export_encoder_decoder_models_on_cuda(
|
|
self, test_name, name, model_name, feature, onnx_config_class_constructor
|
|
):
|
|
self._onnx_export_encoder_decoder_models(
|
|
test_name, name, model_name, feature, onnx_config_class_constructor, device="cuda"
|
|
)
|
|
|
|
@parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_WITH_PAST_MODELS))
|
|
@slow
|
|
@require_torch
|
|
def test_pytorch_export_with_past(self, test_name, name, model_name, feature, onnx_config_class_constructor):
|
|
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor)
|
|
|
|
@parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_SEQ2SEQ_WITH_PAST_MODELS))
|
|
@slow
|
|
@require_torch
|
|
def test_pytorch_export_seq2seq_with_past(
|
|
self, test_name, name, model_name, feature, onnx_config_class_constructor
|
|
):
|
|
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor)
|
|
|
|
@parameterized.expand(_get_models_to_test(TENSORFLOW_EXPORT_DEFAULT_MODELS))
|
|
@slow
|
|
@require_tf
|
|
@require_vision
|
|
def test_tensorflow_export(self, test_name, name, model_name, feature, onnx_config_class_constructor):
|
|
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, framework="tf")
|
|
|
|
@parameterized.expand(_get_models_to_test(TENSORFLOW_EXPORT_WITH_PAST_MODELS), skip_on_empty=True)
|
|
@slow
|
|
@require_tf
|
|
def test_tensorflow_export_with_past(self, test_name, name, model_name, feature, onnx_config_class_constructor):
|
|
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, framework="tf")
|
|
|
|
@parameterized.expand(_get_models_to_test(TENSORFLOW_EXPORT_SEQ2SEQ_WITH_PAST_MODELS), skip_on_empty=True)
|
|
@slow
|
|
@require_tf
|
|
def test_tensorflow_export_seq2seq_with_past(
|
|
self, test_name, name, model_name, feature, onnx_config_class_constructor
|
|
):
|
|
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, framework="tf")
|
|
|
|
|
|
class StableDropoutTestCase(TestCase):
|
|
"""Tests export of StableDropout module."""
|
|
|
|
@require_torch
|
|
@pytest.mark.filterwarnings("ignore:.*Dropout.*:UserWarning:torch.onnx.*") # torch.onnx is spammy.
|
|
def test_training(self):
|
|
"""Tests export of StableDropout in training mode."""
|
|
devnull = open(os.devnull, "wb")
|
|
# drop_prob must be > 0 for the test to be meaningful
|
|
sd = modeling_deberta.StableDropout(0.1)
|
|
# Avoid warnings in training mode
|
|
do_constant_folding = False
|
|
# Dropout is a no-op in inference mode
|
|
training = torch.onnx.TrainingMode.PRESERVE
|
|
input = (torch.randn(2, 2),)
|
|
|
|
torch.onnx.export(
|
|
sd,
|
|
input,
|
|
devnull,
|
|
opset_version=12, # Minimum supported
|
|
do_constant_folding=do_constant_folding,
|
|
training=training,
|
|
)
|
|
|
|
# Expected to fail with opset_version < 12
|
|
with self.assertRaises(Exception):
|
|
torch.onnx.export(
|
|
sd,
|
|
input,
|
|
devnull,
|
|
opset_version=11,
|
|
do_constant_folding=do_constant_folding,
|
|
training=training,
|
|
)
|