mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-06 06:10:04 +06:00

* add MBartForConditionalGeneration * style * rebase and fixes * add mbart test in TEST_FILES_WITH_NO_COMMON_TESTS * fix docs * don't ignore mbart * doc * fix mbart fairseq link * put mbart before bart * apply doc suggestions
38 lines
1.4 KiB
ReStructuredText
38 lines
1.4 KiB
ReStructuredText
MBart
|
|
----------------------------------------------------
|
|
**DISCLAIMER:** If you see something strange,
|
|
file a `Github Issue <https://github.com/huggingface/transformers/issues/new?assignees=&labels=&template=bug-report.md&title>`__ and assign
|
|
@sshleifer
|
|
|
|
Overview
|
|
~~~~~~~~~~~~~~~~~~~~~
|
|
The MBart model was presented in `Multilingual Denoising Pre-training for Neural Machine Translation <https://arxiv.org/abs/2001.08210>`_ by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov
|
|
Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer. According to the abstract,
|
|
|
|
MBART is a sequence-to-sequence denoising auto-encoder pre-trained on large-scale monolingual corpora in many languages using the BART objective. mBART is one of the first methods for pre-training a complete sequence-to-sequence model by denoising full texts in multiple languages, while previous approaches have focused only on the encoder, decoder, or reconstructing parts of the text.
|
|
|
|
The Authors' code can be found `here <https://github.com/pytorch/fairseq/tree/master/examples/mbart>`__
|
|
|
|
|
|
MBartConfig
|
|
~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.MBartConfig
|
|
:members:
|
|
|
|
|
|
MBartTokenizer
|
|
~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.MBartTokenizer
|
|
:members: build_inputs_with_special_tokens, prepare_seq2seq_batch
|
|
|
|
|
|
MBartForConditionalGeneration
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.MBartForConditionalGeneration
|
|
:members: generate, forward
|
|
|
|
|